Mercury in the sediments of freshwater lakes in Ny-Ålesund, Arctic (original) (raw)

THE FATE OF MERCURY IN ARCTIC TERRESTRIAL AND AQUATIC ECOSYSTEMS, A REVIEW

Environmental …, 2012

Environmental context. Mercury, in its methylated form, is a neurotoxin that biomagnifies in marine and terrestrial foodwebs leading to elevated levels in fish and fish-eating mammals worldwide, including at numerous Arctic locations. Elevated mercury concentrations in Arctic country foods present a significant exposure risk to Arctic people. We present a detailed review of the fate of mercury in Arctic terrestrial and marine ecosystems, taking into account the extreme seasonality of Arctic ecosystems and the unique processes associated with sea ice and Arctic hydrology.

Are Arctic Ocean ecosystems exceptionally vulnerable to global emissions of mercury? A call for emphasised research on methylation and the consequences of climate change

Environmental Chemistry, 2010

Environmental context. Mercury is a global contaminant that has entered Arctic food webs in sufficient quantity to put at risk the health of top predators and humans that consume them. Recent research has discovered a photochemical process unique to the Arctic that leads to mercury deposition on frozen surfaces after polar sunrise, but the connection between mercury deposition and entry into food webs remains tenuous and poorly understood. We propose here that the Arctic Ocean's sensitivity to the global mercury cycle depends far more on neglected post-deposition processes that lead to methylation within the ice-ocean system, and the vulnerability of these processes to changes occurring in the cryosphere.

Environmental factors influencing mercury speciation in Subarctic and Boreal lakes

The Science of the total environment, 2014

Environmental drivers of total mercury (TotHg) concentrations, methylmercury (MeHg) concentrations, and MeHg fractions (a proxy for methylation potential, expressed as %MeHg) were assessed in a synoptic study of 51 lakes in southeast (Boreal) and northeast (Subarctic) Norway. Concentrations of TotHg and MeHg ranged between 0.5-6.6 ng/L and <0.02-0.70 ng/L, respectively. The lakes span wide ranges of explanatory environmental variables, including water chemistry, catchment characteristics, climate conditions, and atmospheric deposition of Hg, sulphur and nitrogen (N). Dissolved organic matter (DOM), measured as total organic carbon (TOC), was the variable most strongly correlated with TotHg (r(2)=0.76) and MeHg (r(2)=0.64) concentrations. Lakes in the Subarctic region had significantly lower TotHg and MeHg concentrations, and %MeHg than lakes in the Boreal region (p<0.01), implying a lower aquatic food web exposure of aqueous Hg species in Subarctic Norway than in the Boreal la...

Total mercury and methylmercury distributions in surface sediments from Kongsfjorden, Svalbard, Norwegian Arctic

Environmental science and pollution research international, 2015

The total mercury (THg) and methylmercury (MeHg) distributions in the surface sediments of Kongsfjorden, Svalbard, in the Norwegian Arctic were investigated in this study. The results showed that THg concentrations ranged from 9.11 to 86.73 ng g(-1), whereas MeHg concentrations had an average of only 0.11 ng g(-1). Factors that control the distribution and methylated transformation of mercury were examined, and the results suggested that the movements of ocean currents and glaciers affect the THg distribution. The total organic carbon (TOC) and N contents in the sediments were positively correlated with THg concentration, which indicated that the THg distribution at these stations was primarily controlled by organic matter in the sediments. A complex relationship was observed between the THg and S contents, possibly due to anthropogenic activities involved in the perennial scientific expedition. MeHg and THg exhibited similar correlations with the sediment chemical characteristics f...

Methylated Mercury Species in Canadian High Arctic Marine Surface Waters and Snowpacks

Environmental Science & Technology, 2007

We sampled seawater and snowpacks in the Canadian high Arctic for methylated species of mercury (Hg). We discovered that, although seawater sampled under the sea ice had very low concentrations of total Hg (THg, all forms of Hg in a sample; on average 0.14-0.24 ng L -1 ), 30-45% of the THg was in the monomethyl Hg (MMHg) form (on average 0.057-0.095 ng L -1 ), making seawater itself a direct source of MMHg for biomagnification through marine food webs. Seawater under the ice also contained high concentrations of gaseous elemental Hg (GEM; 129 ( 36 pg L -1 ), suggesting that open water regions such as polynyas and ice leads were a net source of ∼130 ( 30 ng Hg m -2 day -1 to the atmosphere. We also found 11.1 ( 4.1 pg L -1 of dimethyl Hg (DMHg) in seawater and calculated that there could be a significant flux of DMHg to the atmosphere from open water regions. This flux could then result in MMHg deposition into nearby snowpacks via oxidation of DMHg to MMHg in the atmosphere. In fact, we found high concentrations of MMHg in a few snowpacks near regions of open water. Interestingly, we discovered a significant log-log relationship between Clconcentrations in snowpacks and concentrations of THg. We hypothesize that as Clconcentrations in snowpacks increase, inorganic Hg(II) occurs principally as less reducible chloro complexes and, hence, remains in an oxidized state. As a result, snowpacks that receive both marine aerosol deposition of Cland deposition of Hg(II) via springtime atmospheric Hg depletion events, for example, may contain significant loads of Hg(II). Overall, though, the median wet/dry loads of Hg in the snowpacks we sampled in the high Arctic (5.2 mg THg ha -1 and 0.03 mg MMHg ha -1 ) were far below wet-only annual THg loadings throughout southern Canada and most of the U.S. (22-200 mg ha -1 ). Therefore, most Arctic snowpacks contribute relatively little to marine pools of both Hg(II) and MMHg at snowmelt.

Mercury in the marine environment of the Canadian Arctic: Review of recent findings

The Science of the total environment, 2015

This review summarizes data and information which have been generated on mercury (Hg) in the marine environment of the Canadian Arctic since the previous Canadian Arctic Contaminants Assessment Report (CACAR) was released in 2003. Much new information has been collected on Hg concentrations in marine water, snow and ice in the Canadian Arctic. The first measurements of methylation rates in Arctic seawater indicate that the water column is an important site for Hg methylation. Arctic marine waters were also found to be a substantial source of gaseous Hg to the atmosphere during the ice-free season. High Hg concentrations have been found in marine snow as a result of deposition following atmospheric mercury depletion events, although much of this Hg is photoreduced and re-emitted back to the atmosphere. The most extensive sampling of marine sediments in the Canadian Arctic was carried out in Hudson Bay where sediment total Hg (THg) concentrations were low compared with other marine re...

Mercury in Arctic marine ecosystems: Sources, pathways and exposure

Environmental Research, 2012

Mercury in the Arctic is an important environmental and human health issue. The reliance of Northern Peoples on traditional foods, such as marine mammals, for subsistence means that they are particularly at risk from mercury exposure. The cycling of mercury in Arctic marine systems is reviewed here, with emphasis placed on the key sources, pathways and processes which regulate mercury levels in marine food webs and ultimately the exposure of human populations to this contaminant. While many knowledge gaps exist limiting our ability to make strong conclusions, it appears that the long-range transport of mercury from Asian emissions is an important source of atmospheric Hg to the Arctic and that mercury methylation resulting in monomethylmercury production (an organic form of mercury which is both toxic and bioaccumulated) in Arctic marine waters is the principal source of mercury incorporated into food webs. Mercury concentrations in biological organisms have increased since the onset of the industrial age and are controlled by a combination of abiotic factors (e.g., monomethylmercury supply), food web dynamics and structure, and animal behavior (e.g., habitat selection and feeding behavior). Finally, although some Northern Peoples have high mercury concentrations of mercury in their blood and hair, harvesting and consuming traditional foods have many nutritional, social, cultural and physical health benefits which must be considered in risk management and communication.