Glaucoma-related Changes in the Mechanical Properties and Collagen Micro-architecture of the Human Sclera (original) (raw)
Related papers
Scleral anisotropy and its effects on the mechanical response of the optic nerve head
Biomechanics and Modeling in Mechanobiology, 2012
This paper presents a computational modeling study of the effects of the collagen fiber structure on the mechanical response of the sclera and the adjacent optic nerve head (ONH). A specimenspecific inverse finite element method was developed to determine the material properties of two human sclera subjected to full-field inflation experiments. A distributed fiber model was applied to describe the anisotropic elastic behavior of the sclera. The model directly incorporated wide angle x-ray scattering measurements of the anisotropic collagen structure. The converged solution of the inverse method was used in micromechanical studies of the mechanical anisotropy of the sclera at different scales. The effects of the scleral collagen fiber structure on the ONH deformation were evaluated by progressively filtering out local anisotropic features. It was found that the majority of the midposterior sclera could be described as isotropic without significantly affecting the mechanical response of the tissues of the ONH. In contrast, removing local anisotropic features in the peripapillary sclera produced significant changes in scleral canal expansion, and lamina cribrosa deformation. Local variations in the collagen structure of the peripapillary sclera significantly influenced the mechanical response of the ONH.
Dynamic material properties of the human sclera
Journal of Biomechanics, 2009
As a result of trauma, approximately 30,000 people become blind in one eye every year in the United States. A common injury prediction tool is computational modeling, which requires accurate material properties to produce reliable results. Therefore, the purpose of this study was to determine the dynamic material properties of the human sclera. A high-rate pressurization system was used to create dynamic pressure to the point of rupture in 12 human eyes. Measurements were obtained for the internal pressure, the diameter of the globe, the thickness of the sclera, and the changing coordinates of the optical markers using high-rate video. A relationship between true stress and true strain was determined for the sclera tissue in two directions. It was found that the average maximum true stress was 13.8974.81 MPa for both the equatorial and meridional directions, the average maximum true strain along the equator was 0.04170.014, and the average maximum true strain along the meridian was 0.05870.018. Results show a significant difference in the maximum strain in the equatorial and meridional directions (p ΒΌ 0.02). In comparing these data with previous studies, it is concluded that the human sclera is both anisotropic and viscoelastic. The dynamic material properties presented in this study can be used for advanced models of the human eye to help prevent eye injuries in the future.
Biomechanical aspects of axonal damage in glaucoma: A brief review
Experimental Eye Research, 2017
The biomechanical environment within the optic nerve head (ONH) is complex and is likely directly involved in the loss of retinal ganglion cells (RGCs) in glaucoma. Unfortunately, our understanding of this process is poor. Here we describe factors that influence ONH biomechanics, including ONH connective tissue microarchitecture and anatomy; intraocular pressure (IOP); and
Perspectives on biomechanical growth and remodeling mechanisms in glaucoma
Mechanics Research Communications, 2012
Glaucoma is a blinding diseases in which damage to the axons results in loss of retinal ganglion cells. Experimental evidence indicates that chronic intraocular pressure elevation initiates axonal insult at the level of the lamina cribrosa. The lamina cribrosa is a porous collagen structure through which the axons pass on their path from the retina to the brain. Recent experimental studies revealed the extensive structural changes of the lamina cribrosa and its surrounding tissues during the development and progression of glaucoma. In this perspective paper we review the experimental evidence for growth and remodeling mechanisms in glaucoma including adaptation of tissue anisotropy, tissue thickening/thinning, tissue elongation/shortening and tissue migration. We discuss the existing predictive computational approaches that try to elucidate the potential biomechanical basis of theses growth and remodeling mechanisms and highlight open questions, challenges, and avenues for further development.
Biomechanical assessment in models of glaucomatous optic neuropathy
Experimental eye research, 2015
The biomechanical environment within the eye is of interest in both the regulation of intraocular pressure and the loss of retinal ganglion cell axons in glaucomatous optic neuropathy. Unfortunately, this environment is complex and difficult to determine. Here we provide a brief introduction to basic concepts of mechanics (stress, strain, constitutive relationships) as applied to the eye, and then describe a variety of experimental and computational approaches used to study ocular biomechanics. These include finite element modeling, direct experimental measurements of tissue displacements using optical and other techniques, direct experimental measurement of tissue microstructure, and combinations thereof. Thanks to notable technical and conceptual advances in all of these areas, we are slowly gaining a better understanding of how tissue biomechanical properties in both the anterior and posterior segments may influence the development of, and risk for, glaucomatous optic neuropathy....
IEEE Transactions on Medical Imaging, 2014
Optic nerve head (ONH) tissue properties and biomechanics remain mostly unmeasurable in the experiment. We hypothesized that these can be estimated numerically from ocular parameters measurable in vivo with optical coherence tomography (OCT). Using parametric models representing human ONHs we simulated acute intraocular pressure (IOP) increases (10 mmHg). Statistical models were fit to predict, from OCT-measurable parameters, 15 outputs, including ONH tissue properties, stresses, and deformations. The calculations were repeated adding parameters that have recently been proposed as potentially measurable with OCT. We evaluated the sensitivity of the predictions to variations in the experimental parameters. Excellent fits were obtained to predict all outputs from the experimental parameters, with cross-validated R2s between 0.957 and 0.998. Incorporating the potentially measurable parameters improved fits significantly. Predictions of tissue stiffness were accurate to within 0.66 MPa for the sclera and 0.24 MPa for the lamina cribrosa. Predictions of strains and stresses were accurate to within 0.62% and 4.9 kPa, respectively. Estimates of ONH biomechanics and tissue properties can be obtained quickly from OCT measurements using an applet that we make freely available. These estimates may improve understanding of the eye sensitivity to IOP and assessment of patient risk for development or progression of glaucoma.