Optimization of the Rheological Properties of Self-Assembled Tripeptide/Alginate/Cellulose Hydrogels for 3D Printing (original) (raw)

3D printing is an emerging and powerful technique to create shape-defined three-dimensional structures for tissue engineering applications. Herein, different alginate–cellulose formulations were optimized to be used as printable inks. Alginate (Alg) was chosen as the main component of the scaffold due to its tunable mechanical properties, rapid gelation, and non-toxicity, whereas microcrystalline cellulose (MCC) was added to the hydrogel to modulate its mechanical properties for printing. Additionally, Fmoc-FFY (Fmoc: 9-fluorenylmethoxycarbonyl; F: phenylalanine; Y: tyrosine), a self-assembled peptide that promotes cell adhesion was incorporated into the ink without modifying its rheological properties and shear-thinning behavior. Then, 3D-printed scaffolds made of Alg, 40% of MCC inks and Fmoc-FFY peptide were characterized by scanning electron microscopy and infrared spectroscopy, confirming the morphological microstructure of the hydrogel scaffolds with edged particles of MCC hom...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact