The peritoneal cavity as a bioreactor for tissue engineering visceral organs: bladder, uterus and vas deferens (original) (raw)
Related papers
Reconstruction of Vascular and Urologic Tubular Grafts by Tissue Engineering
Processes
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing t...
Tissue Engineering in Urology- Progress and Prospects - A Review Article
Open Access Journal of Urology & Nephrology
Regenerative medicine is a new branch of medicine based on tissue engineering technology. This field of science has many things to offer in reconstructive urology where native organ is non-functional, and no substitute is available. Despite the initial promising results, it has not become a reality in the true sense. There are numerous obstacles that are slowing down the process of regenerative medicine. The progress shown in stem cell biotechnology and material science provides new vistas to translate experimental methods clinical reality. Tissue engineering encompasses a multidisciplinary approach with the main aim of development of biological substitutes designed to restore and maintain normal function in diseased or injured organs. This review is done to ascertain its current status and the progress that has been made in regenerative medicine in the reconstruction of various Genito-urinary organs.
Tissue Engineering of Urinary Bladder and Urethra: Advances from Bench to Patients
The Scientific World Journal, 2013
Urinary tract is subjected to many varieties of pathologies since birth including congenital anomalies, trauma, inflammatory lesions, and malignancy. These diseases necessitate the replacement of involved organs and tissues. Shortage of organ donation, problems of immunosuppression, and complications associated with the use of nonnative tissues have urged clinicians and scientists to investigate new therapies, namely, tissue engineering. Tissue engineering follows principles of cell transplantation, materials science, and engineering. Epithelial and muscle cells can be harvested and used for reconstruction of the engineered grafts. These cells must be delivered in a well-organized and differentiated condition because water-seal epithelium and well-oriented muscle layer are needed for proper function of the substitute tissues. Synthetic or natural scaffolds have been used for engineering lower urinary tract. Harnessing autologous cells to produce their own matrix and form scaffolds is a new strategy for engineering bladder and urethra. This self-assembly technique avoids the biosafety and immunological reactions related to the use of biodegradable scaffolds. Autologous equivalents have already been produced for pigs (bladder) and human (urethra and bladder). The purpose of this paper is to present a review for the existing methods of engineering bladder and urethra and to point toward perspectives for their replacement.
Uterine Tissue Engineering: Where We Stand and the Challenges Ahead
Tissue Engineering Part B: Reviews, 2021
Tissue engineering is an innovative approach to develop allogeneic tissues and organs. The uterus is a very sensitive and complex organ, which requires refined techniques to properly regenerate and even, to rebuild itself. Many therapies were developed in 20th century to solve reproductive issues related to uterus failure and, more recently, tissue engineering techniques provided a significant evolution in this issue. Herein we aim to provide a broad overview and highlights of the general concepts involved in bioengineering to reconstruct the uterus and its tissues, focusing on strategies for tissue repair, production of uterine scaffolds, biomaterials and reproductive animal models, highlighting the most recent and effective tissue engineering protocols in literature and their application in regenerative medicine. In addition, we provide a discussion about what was achieved in uterine tissue engineering, the main limitations, the challenges to overcome, and future perspectives in this research field.
Tissue engineering in urology: Where are we going?
Current Urology Reports, 2003
Tissue engineering in urology is a broad term used to describe the development of alternative tissue sources for diseased or dysfunctional native urologic tissue. This article reviews the recently published techniques involving synthetic and natural biodegradable matrices alone, known as "unseeded" scaffolds, and the latest data on "seeded" scaffolds, which are impregnated with cultured cells from urologic organs. Recent discoveries in reporter gene labeling of urologic tissue are discussed as a new method to identify and track the fates of these transplanted cells in vivo. This article also investigates how these bioengineering techniques are applied to synthetic and natural scaffolds, such as polyglycolic acid and porcine small intestine submucosa, to increase bladder capacity, repair urethral strictures, and replace corporal plaques in Peyronie's disease. Furthermore, recently published reports that these materials have been seeded with chondrocytes to create corporal rods for penile prostheses and stents for ureteral and urethral stricture disease are discussed. With these latest developments as a foundation, the future directions of tissue engineering in urology are presented.
Reference Module in Materials Science and Materials Engineering, 2016
One of the most significant breakthroughs in the field of mammalian regeneration has been the application of principles of bioengineering to guiding tissue regeneration. This approach is called tissue engineering. The goal of tissue engineering is the replacement of damaged tissues and organs with new tissue that mimics as closely as possible the overall structure and function of the original tissue. Some general strategies have been adopted to obtain new tissues they are: (1) use of autologous cells sources; (2) production of a scaffold for damaged target tissue; (3) tissue culture systems, and (4) Use of substances that induce the regeneration of damaged tissue. In this work, we discuss main aspects in the tissue engineering field.
Expert Opinion on Biological Therapy, 2013
Introduction: The most critical issue to organ transplantation is the identification of new sources of organs. The present manuscript illustrates the state-ofthe-art regenerative medicine (RM) investigations aiming to manufacturing abdominal organs for transplant purposes. Areas covered: This manuscript focuses on research in the bioengineering and regeneration of kidneys, insulin-producing cells, livers and small bowel. The main technology currently under development exploits the seeding of cells on supporting scaffolding material. Despite favorable preliminary results obtained with relatively simple, hollow organs, when more complex organs are considered, the scenario changes dramatically. Investigations are still in early stages, and clinical translation is not yet foreseeable based on current knowledge and information. Obstacles are numerous but we believe the critical factor hampering success is lack of in-depth understanding of the extracellular matrix (ECM) and cell--ECM interactions, as well as the mechanisms with which organs develop in utero. Expert opinion: The success of RM to generate transplantable abdominal organs relies heavily on progress in (stem) cell therapies, developmental and ECM biology, and in the thorough understanding of the intricate relationship and interplay between cells and the ECM. This will require enormous investments in financial and medical resources, which ideally should be embarked upon by governments, the private sector and academia.
Biomaterials for Tissue Engineering
Advanced Engineering Materials, 2007
Biomaterials play a critical role in the engineering of new functional genitourinary tissues for the replacement of lost or malfunctioning tissues. They provide a temporary scaolding to guide new tissue growth and organization and may provide bioactive signals (e.g., cell-adhesion peptides and growth factors) required for the retention of tissue-speci®c gene expression. A variety of biomaterials, which can be classi®ed into three types ± naturally derived materials (e.g., collagen and alginate), acellular tissue matrices (e.g., bladder submucosa and small-intestinal submucosa), and synthetic polymers [e.g., polyglycolic acid, polylactic acid, and poly(lactic-co-glycolic acid)] ± have proved to be useful in the reconstruction of a number of genitourinary tissues in animal models. Some of these materials are currently being used clinically for genitourinary applications. Ultimately, the development or selection of appropriate biomaterials may allow the engineering of multiple types of functional genitourinary tissues.