Nonalcoholic Fatty Liver Disease and Hypercholesterolemia: Roles of Thyroid Hormones, Metabolites, and Agonists (original) (raw)
Related papers
Hepatology, 2008
Non-alcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease, with a prevalence ranging from 10% to 30%. The use of thyroid hormone receptor (TR) agonists for the treatment of NAFLD has not been considered viable because thyroid hormones increase free fatty acid (FFA) flux from the periphery to the liver, induce hepatic lipogenesis, and therefore could potentially cause steatosis. MB07811 is an orally active HepDirect prodrug of MB07344, a liver-targeted TR- agonist. The purpose of these studies was to assess the effects of MB07811 on whole body and liver lipid metabolism of normal rodents and rodent models of hepatic steatosis. In the current studies, MB07811 markedly reduced hepatic steatosis as well as reduced plasma FFA and triglycerides. In contrast to MB07811, T 3 induced adipocyte lipolysis in vitro and in vivo and had a diminished ability to decrease hepatic steatosis. This suggests the influx of FFA from the periphery to the liver may partially counteract the antisteatotic activity of T 3. Clearance of liver lipids by MB07811 results from accelerated hepatic fatty acid oxidation, a known consequence of hepatic TR activation, as reflected by increased hepatic mitochondrial respiration rates, changes in hepatic gene expression, and increased plasma acyl-carnitine levels. Transaminase levels remained unchanged, or were reduced, and no evidence for liver fibrosis or other histological liver damage was observed after treatment with MB07811 for up to 10 weeks. Additionally, MB07811, unlike T 3 , did not increase heart weight or decrease pituitary thyroid-stimulating hormone beta (TSH) expression. Conclusion: MB07811 represents a novel class of liver-targeted TR agonists with beneficial low-density lipoprotein cholesterollowering properties that may provide additional therapeutic benefit to hyperlipidemic patients with concomitant NAFLD. (HEPATOLOGY 2009;49:407-417.) See Editorial on Page 348 N onalcoholic fatty liver disease (NALFD) is one of the most common forms of chronic liver disease, with a prevalence ranging from 10% to 30%. 1,2 Under certain conditions, NAFLD can progress to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. 3,4 NAFLD occurs frequently in obese, type 2 diabetic patients 5 and may contribute to the pathological condition underlying hepatic insulin resistance in these patients. 6 Moreover, patients with impaired glucose tolerance and NALFD have an elevated risk of cardiovascular mortality. 3 Although the specific mechanism(s) leading from simple steatosis to steatosis associated with an adverse clinical outcome are under investigation, identification of a potential therapy for NAFLD could have considerable medical utility. 4 Thyroid hormones (such as 3,3Ј,5-triiodo-L-thyronine; T 3
TG68, a Novel Thyroid Hormone Receptor-β Agonist for the Treatment of NAFLD
International Journal of Molecular Sciences
Activation of thyroid hormone receptor β (THRβ) has shown beneficial effects on metabolic alterations, including non-alcoholic fatty liver disease (NAFLD). Here, we investigated the effect of TG68, a novel THRβ agonist, on fatty liver accumulation and liver injury in mice fed a high-fat diet (HFD). C57BL/6 mice fed HFD for 17 or 18 weeks, a time when all mice developed massive steatohepatitis, were then given TG68 at a dose of 9.35 or 2.8 mg/kg for 2 or 3 weeks, respectively. As a reference compound, the same treatment was adopted using equimolar doses of MGL-3196, a selective THRβ agonist currently in clinical phase III. The results showed that treatment with TG68 led to a reduction in liver weight, hepatic steatosis, serum transaminases, and circulating triglycerides. qRT-PCR analyses demonstrated activation of THRβ, as confirmed by increased mRNA levels of Deiodinase-1 and Malic enzyme-1, and changes in lipid metabolism, as revealed by increased expression of Acyl-CoA Oxidase-1 a...
Thyroid hormone analogues and derivatives: Actions in fatty liver
World journal of hepatology, 2014
Fatty liver or nonalcoholic fatty liver disease (NAFLD), a problem of increasing clinical significance and prevalence worldwide, is associated with increased risk for the development of cirrhosis and hepatocellular carcinoma. Although several therapeutic approaches can be used in the context of NAFLD, dietary and physical activities are still the most frequently used strategies. Some pharmacological agents show promising results although no conclusions can be drawn from recent clinical trials. Thyroid hormones [THs; thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3)] coordinate a diverse array of physiological events during development and lipid/energy homeostasis and have some potentially therapeutic actions which include inducing weight loss, and lowering plasma cholesterol levels and tissue adiposity. The thyroid hormones exert their physiological effects by binding to specific nuclear receptors [thyroid hormone receptors (TR)] of which the TRβ isoform is liver specific and h...
Proceedings of the National Academy of Sciences, 2007
Despite efforts spanning four decades, the therapeutic potential of thyroid hormone receptor (TR) agonists as lipid-lowering and anti-obesity agents remains largely unexplored in humans because of dose-limiting cardiac effects and effects on the thyroid hormone axis (THA), muscle metabolism, and bone turnover. TR agonists selective for the TRβ isoform exhibit modest cardiac sparing in rodents and primates but are unable to lower lipids without inducing TRβ-mediated suppression of the THA. Herein, we describe a cytochrome P450-activated prodrug of a phosphonate-containing TR agonist that exhibits increased TR activation in the liver relative to extrahepatic tissues and an improved therapeutic index. Pharmacokinetic studies in rats demonstrated that the prodrug (2 R ,4 S )-4-(3-chlorophenyl)-2-[(3,5-dimethyl-4-(4′-hydroxy-3′-isopropylbenzyl)phenoxy)methyl]-2-oxido-[1,3,2]-dioxaphosphonane (MB07811) undergoes first-pass hepatic extraction and that cleavage of the prodrug generates the ...
Frontiers in Physiology
′ ,5-triiodo-L-thyronine (T3) improves hepatic lipid accumulation by increasing lipid catabolism but it also increases lipogenesis, which at first glance appears contradictory. Recent studies have shown that 3,5-diiodothyronine (T2), a natural thyroid hormone derivative, also has the capacity to stimulate hepatic lipid catabolism, however, little is known about its possible effects on lipogenic gene expression. Because genes classically involved in hepatic lipogenesis such as SPOT14, acetyl-CoA-carboxylase (ACC), and fatty acid synthase (FAS) contain thyroid hormone response elements (TREs), we studied their transcriptional regulation, focusing on TRE-mediated effects of T3 compared to T2 in rats receiving high-fat diet (HFD) for 1 week. HFD rats showed a marked lipid accumulation in the liver, which was significantly reduced upon simultaneous administration of either T3 or T2 with the diet. When administered to HFD rats, T2, in contrast with T3, markedly downregulated the expression of the above-mentioned genes. T2 downregulated expression of the transcription factors carbohydrate-response element-binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c) involved in activation of transcription of these genes, which explains the suppressed expression of their target genes involved in lipogenesis. T3, however, did not repress expression of the TRE-containing ChREBP gene but repressed SREBP-1c expression. Despite suppression of SREBP-1c expression by T3 (which can be explained by the presence of nTRE in its promoter), the target genes were not suppressed, but normalized to HFD reference levels or even upregulated (ACC), partly due to the presence of TREs on the promoters of these genes and partly to the lack of suppression of ChREBP. Thus, T2 and T3 probably act by different molecular mechanisms to achieve inhibition of hepatic lipid accumulation.
Effects of 3,5-diiodo-l-thyronine on the liver of high fat diet fed rats
Experimental studies have highlighted that the administration of 3,5-diiodo-L-thyronine (T2) to rats fed diets rich in lipids induces a decrease of cholesterol and triglycerides plasma levels and body weight (BW) without inducing liver steatosis. On the basis of these observations we carried out some experimental in vivo studies to assess the effects of multiple high doses of T2 on the pituitary thyroid axis of rats fed diet rich in lipids. Fifteen male Wistar rats were divided into three groups of five animals each. The first group (N group) received standard diet, the second group was fed with a high fat diet (HFD group), while the third group (HFDT2 group) was additionally given with T2 intraperitoneally at a dose level of 70 µg/100 g of BW three times a week up to four weeks. At the end of the treatment period blood sample from each animal was collected, centrifuged and the resultant serum was stored at-20°C. The serum concentrations of thyroid-stimulating hormone (TSH), triiodothyronine, thyroxine, adrenocorticotropic hormone, triglycerides, cholesterol, glucose, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase were then determined at various intervals. In addition, liver of rats was examined by histology order to assess the presence and degree of steatosis. The administration of T2 to rats fed with a high fat diet suppressed TSH secretion (P=0.013) while no steatosis was observed in the liver of these animals. Our data show that multiple administrations of high doses of T2 to rats fed diets rich in lipid inhibit TSH secretion and prevent the onset of liver steatosis in these animals.
PloS one, 2015
Thyroid hormone receptor (TR) agonists have been proposed as therapeutic agents to treat non-alcoholic fatty liver disease (NAFLD) and insulin resistance. We investigated the ability of the TR agonists GC-1 and KB2115 to reduce hepatic steatosis in ob/ob mice. Both compounds markedly reduced hepatic triglyceride levels and ameliorated hepatic steatosis. However, the amelioration of fatty liver was not sufficient to improve insulin sensitivity in these mice and reductions in hepatic triglycerides did not correlate with improvements in insulin sensitivity or glycemic control. Instead, the effects of TR activation on glycemia varied widely and were found to depend upon the time of treatment as well as the compound and dosage used. Lower doses of GC-1 were found to further impair glycemic control, while a higher dose of the same compound resulted in substantially improved glucose tolerance and insulin sensitivity, despite all doses being equally effective at reducing hepatic triglycerid...