Assessment of primary hemostasis with an acoustic biosensor using shear dependent kinetics behavior: principle and limitations (original) (raw)
Related papers
Topology Challenge for the Assessment of Living Cell Deposits with Shear Bulk Acoustic Biosensor
Nanomaterials
Shear bulk acoustic type of resonant biosensors, such as the quartz crystal microbalance (QCM), give access to label-free in-liquid analysis of surface interactions. The general understanding of the sensing principles was inherited from past developments in biofilms measurements and applied to cells while keeping the same basic assumptions. Thus, the biosensor readouts are still quite often described using ‘mass’ related terminology. This contribution aims to show that assessment of cell deposits with acoustic biosensors requires a deep understanding of the sensor transduction mechanism. More specifically, the cell deposits should be considered as a structured viscoelastic load and the sensor response depends on both material and topological parameters of the deposits. This shifts the paradigm of acoustic biosensor away from the classical mass loading perspective. As a proof of the concept, we recorded QCM frequency shifts caused by blood platelet deposits on a collagen surface unde...
Significance of mass and viscous loads discrimination for an AT-quartz blood group immunosensor
Sensors and Actuators B: Chemical, 1994
An immunosensor based on a thickness shear mode (TSM) acoustic resonator has been fabricated and tested for ABO blood grouping. The resonant frequency f., and the quality factor Q,, of the loaded resonator are deduced from the electrical conductance spectrum measured by an impedance analyzer. An acoustic transmission line model is used to describe the acoustic immunosensor and the two resonance parameters, fn and Q., are shown to be related to the shear acoustic impedance of the loading material. Experimental results show the ability of the TSM immunosensor to discriminate between A and B groups. Furthermore, it is shown that red cells immobilized by immuno complexing induce significant viscous liquid changes with no additional rigid mass deposition. This is interpreted as an additional viscous load owing to the intraerythrocyte liquid.
Proceedings
The contribution focuses on the development of microresonant sensor solution integrated in microfluidic platform for the haemostasis assessment at realistic rheological flow conditions similar to the one in blood vessels. A multi-parameter sensor performs real time analysis of interactions between immobilized collagen and platelets. The detection and characterization of such interactions at controlled flow rates provide information to evaluate the dynamic of each step of primary haemostasis. The microresonant sensor concept was developed and is described in the contribution.
Biosensors and Bioelectronics, 2005
A recently developed variant of quartz crystal microbalance (QCM) called QCM-with dissipation monitoring (QCM-D) allows simultaneous and simple measurements of changes in adsorbed mass as well as the viscoelastic property (D-factor) of deposited protein layers on the sensor surface. We have taken the QCM-D technology a step further and demonstrated its advantages in the study of protein assembly as a consequence of surface induced immune complement activation, or contact activated blood coagulation. In the present study we have continued our QCM-D investigations of surface assembly of fibrin clot formation and complement activation and incubated differently modified quartz sensor surfaces in blood plasma and sera. Polymer surfaces used were spin-coated polyethylene, poly(ethylene terephtalate), poly(methylmetacrylate) and poly(dimethylsiloxane). Also used were sputtered titanium and heparin grafted surfaces. In this investigation we found that we could describe the surface induced coagulation with four independent parameters: (1) Time of onset of coagulation, (2) fibrin deposition rate, (3) total frequency shift at stable plateau, and (4) fibrin clot density. The most important finding was that the blood plasma clot density can be assessed with the use of D determinations and that the clot density varied significantly with the chemical composition of the surface. However, the D-factor did not give any new analytical information about the possible complement activation mechanisms. Nevertheless, the QCM-D was found to be a reliable tool for the analysis of surface induced complement activation. We also compared the QCM-D technique with traditional enzyme immuno assay (EIA) measurements of soluble products from the surface activation of the complement and coagulation systems. We found that the results from EIA and QCM-D measurements corresponded well for the complement activation but not for the coagulation, probably due to the biological complexity of the coagulation system.
Acoustic detection of cell adhesion on a quartz crystal microbalance
Biotechnology and Applied Biochemistry, 2012
An acoustic quartz crystal microbalance (QCM) was used to signal and follow the cell-adhesion process of epithelial cells [human embryonic kidney (HEK) 293T and cervical cancer (HeLa) and fibroblasts [African Green Monkey kidney cells (COS-7)] onto gold surfaces. Cells were applied on the sensor and grown under serum-free and serumsupplemented culture media. The sensor resonance frequency (f) and motional resistance (R) variations were measured during cell growth to monitor cell adhesion processes. Fingerprints of the adhesion processes, generated using the QCM signal, were found to be specific for each cell type while enabling the identification of the phases of the adhesion process. Under serum-free conditions, the deposition of HEK 293T and HeLa cells was characterized by a decrease of f with constant R, whereas for COS-7 cells, this initial deposition was signaled by variations of R at constant f. Toward the end of the adhesion process, fingerprints were characterized by a continuous increase of R consistent with the increase in viscoelasticity. The morphology of adherent cells was visualized by fluorescent microscopy, enabling the association of the cell morphology with QCM signals.
Biosensors and Bioelectronics, 2007
Hemostasis is required to maintain vascular system integrity, but thrombosis, formation of a clot in a blood vessel, is one of the largest causes of morbidity and mortality in the industrialized world. Novel clinical and research tools for characterizing the hemostatic system are of continued interest, and the object of this research is to test the hypothesis that clinically relevant platelet function can be monitored using an electromechanical sensor. A piezoelectric thickness shear mode (TSM) biosensor coated with collagen-I fibers to promote platelet activation and adhesion was developed and tested for sensitivity to detect these primary events. Magnitude and frequency response of the sensor were monitored under static conditions at 37 • C, using platelet-rich plasma (PRP), and PRP with adenosine diphosphate (ADP), a clinical aggregation inhibitor (abciximab), or a collagen binding inhibitor. Sensors loaded with PRP exhibited a 3-stage response; no significant change in response for the first 20 min (Stage-1), followed by a larger drop in response (Stage-2) and subsequently, response gradually increased (Stage-3). Exogenous ADP stimulated an immediate Stage-2 response, while abciximab delayed and reduced the magnitude change of Stage-2. In the presence of collagen inhibitor, Stage-2 response was similar to that of control but was delayed by an additional 20 min. The obtained results, supported by epifluorescence and complementary SEM studies, demonstrated the selective sensitivity of TSM electromechanical biosensors to monitor platelet function and inhibition, particularly aggregation.
Acoustofluidics and Whole-Blood Manipulation in Surface Acoustic Wave Counterflow Devices
Analytical Chemistry, 2014
On-chip functional blocks for sample preprocessing are necessary elements for the implementation of fully portable micrototal analysis systems (μTAS). We demonstrate and characterize the microparticle and whole-blood manipulation capabilities of surface acoustic wave (SAW) driven counterflow micropumps. The motion of suspended cells in this system is governed by the two dominant acoustic forces associated with the scattered SAW (of wavelength λ f): acoustic-radiation force and acoustic-streaming Stokesian drag force. We show that by reducing the microchannel height (h) beyond a threshold value the balance of these forces is shifted toward the acoustic-radiation force and that this yields control of two different regimes of microparticle dynamics. In the regime dominated by the acoustic radiation force (h ≲ λ f), microparticles are collected in the seminodes of the partial standing sound-wave arising from reflections off microchannel walls. This enables the complete separation of plasma and corpuscular components of whole blood in periodical predetermined positions without any prior sample dilution. Conversely, in the regime dominated by acoustic streaming (h ≫ λ f), the microbeads follow vortical streamlines in a pattern characterized by three different phases during microchannel filling. This makes it possible to generate a cell-concentration gradient within whole-blood samples, a behavior not previously reported in any acoustic-streaming device. By careful device design, a new class of SAW pumping devices is presented that allows the manipulation and pretreatment of whole-blood samples for portable and integrable biological chips and is compatible with handheld battery-operated devices.
Procedia Engineering, 2012
The goal has been to develop a Love-wave device and a PDMS microfluidic chip in order to measure immunoreactions in liquid media, operating in dynamic mode (continuous flow-through). The obtained results have been compared with the most used acoustic wave device, the quartz crystal microbalance (QCM), which worked in static mode. It has been demonstrated once again that QCM is an excellent tool as immunosensor, although Lovewave device is a good alternative due to its high sensitivity. Besides, the response time and limit of detection are improved working in dynamic mode. On the other hand, a secondary antibody conjugated with gold nanoparticles has been used as a method to measure concentrations of antigens obtaining a great frequency shift.
High Sensitivity Micro-Elastometry: Applications in Blood Coagulopathy
Annals of Biomedical Engineering, 2013
Highly sensitive methods for the assessment of clot structure can aid in our understanding of coagulation disorders and their risk factors. Rapid and simple clot diagnostic systems are also needed for directing treatment in a broad spectrum of cardiovascular diseases. Here we demonstrate a method for micro-elastometry, named resonant acoustic spectroscopy with optical vibrometry (RASOV), which measures the clot elastic modulus (CEM) from the intrinsic resonant frequency of a clot inside a microwell. We observed a high correlation between the CEM of human blood measured by RASOV and a commercial thromboelastograph (TEG), (R = 0.966). Unlike TEG, RASOV requires only 150 lL of sample and offers improved repeatability. Since CEM is known to primarily depend upon fibrin content and network structure, we investigated the CEM of purified clots formed with varying amounts of fibrinogen and thrombin. We found that RASOV was sensitive to changes of fibrinogen content (0.5-6 mg/mL), as well as to the amount of fibrinogen converted to fibrin during clot formation. We then simulated plasma hypercoagulability via hyperfibrinogenemia by spiking whole blood to 150 and 200% of normal fibrinogen levels, and subsequently found that RASOV could detect hyperfibrinogenemia-induced changes in CEM and distinguish these conditions from normal blood.