Developing New Tools to Fight Human Pathogens: A Journey through the Advances in RNA Technologies (original) (raw)

(Non-)translational medicine: targeting bacterial RNA

Frontiers in Genetics, 2013

The rise and spread of antibiotic resistance is among the most severe challenges facing modern medicine. Despite this fact, attempts to develop novel classes of antibiotic have been largely unsuccessful. The traditional mechanisms by which antibiotics work are subject to relatively rapid bacterial resistance via mutation, and hence have a limited period of efficacy. One promising strategy to ameliorate this problem is to shift from the use of chemical compounds targeting protein structures and processes to a new era of RNA-based therapeutics. RNA-mediated regulation (riboregulation) has evolved naturally in bacteria and is therefore a highly efficient means by which gene expression can be manipulated. Here, we describe recent advances toward the development of effective anti-bacterial therapies, which operate through various strategies centered on RNA.

Insights Into Non-coding RNAs as Novel Antimicrobial Drugs

Frontiers in Genetics

Multidrug resistant bacteria are a serious worldwide problem, especially carbapenemresistant Enterobacteriaceae (such as Klebsiella pneumoniae and Escherichia coli), Acinetobacter baumannii and Pseudomonas aeruginosa. Since the emergence of extensive and pan-drug resistant bacteria there are few antibiotics left to treat patients, thus novel RNA-based strategies are being considered. Here, we examine the current situation of different non-coding RNAs found in bacteria as well as their function and potential application as antimicrobial agents. Furthermore, we discuss the factors that may contribute in the efficient development of RNA-based drugs, the limitations for their implementation and the use of nanocarriers for delivery.

RNA as A Potent Target for Antibacterial Drug Discovery

Biomedical Journal of Scientific & Technical Research

The development of novel antibiotics is becoming a real emergency due to the growing number of multidrug-resistant pathogenic bacteria. This is also a global problem due to mass production and application of various antibiotics both in human and veterinary medicine. Therefore, we need not only to create novel antibiotics but also to speed up the development pipeline. This may be achieved by using novel targets for antibacterial drug discovery. In this review, we focus our attention on several different types of RNA molecules that have been used as antibacterial drug targets. The RNA is the most ambiguous biopolymer in the cell, which carries many different functions. For instance, tRNAs, rRNAs, and mRNAs are essential for gene expression both in the pro-and eukaryotes. However, all these types of RNAs have sequences and something 3D structures that are specific for bacteria only and can be used to shut down essential biochemical processes in bacteria only. All these features make RNA very potent target for antibacterial drug development.

Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology

Applied Microbiology and Biotechnology, 2014

Small RNAs, a large class of ancient posttranscriptional regulators, have recently attracted considerable attention. A plethora of small RNAs has been identified and characterized, many of which belong to the major small noncoding RNA (sRNA) or riboswitch families. It has become increasingly clear that most small RNAs play critical regulatory roles in many processes and are, therefore, considered to be powerful tools for metabolic engineering and synthetic biology. In this review, we describe recent achievements in the identification, characterization, and application of small RNAs. We give particular attention to advances in the design and synthesis of novel sRNAs and riboswitches for metabolic engineering. In addition, a novel strategy for hierarchical control of global metabolic pathways is proposed.

RNA decay: a novel therapeutic target in bacteria

Wiley Interdisciplinary Reviews: RNA, 2012

The need for novel antibiotics is greater now than perhaps any time since the pre-antibiotic era. Indeed, the recent collapse of most pharmaceutical antibacterial groups, combined with the emergence of hypervirulent and pan-antibiotic-resistant bacteria have, in effect, created a "perfect storm" that has severely compromised infection treatment options and led to dramatic increases in the incidence and severity of bacterial infections. Simply put, it is imperative that we develop new classes of antibiotics for the therapeutic intervention of bacterial infections. In that regard, RNA degradation is an essential biological process that has not been exploited for antibiotic development. Herein we discuss the factors that govern bacterial RNA degradation, highlight members of this machinery that represent attractive antimicrobial drug development targets and describe the use of high-throughput screening as a means of developing antimicrobials that target these enzymes. Such agents would represent first-in-class antibiotics that would be less apt to inactivation by currently encountered enzymatic antibiotic-resistance determinants.

The RNA capping machinery as an anti-infective target

Wiley Interdisciplinary Reviews: RNA, 2010

A number of different human pathogens code for their own enzymes involved in the synthesis of the RNA cap structure. Although the RNA cap structures originating from human and microbial enzymes are often identical, the subunit composition, structure and catalytic mechanisms of the microbial-encoded enzymes involved in the synthesis of the RNA cap structure are often significantly different from those of host cells. As a consequence, these pathogenic cap-forming enzymes are potential targets for antimicrobial drugs. During the past few years, experimental studies have started to demonstrate that inhibition of the RNA capping activity is a reasonable approach for the development of antimicrobial agents. The combination of structural, biochemical, and molecular modeling studies are starting to reveal novel molecules that can serve as starting blocks for the design of more potent and specific antimicrobial agents. Here, we examine various strategies that have been developed to inhibit microbial enzymes involved in the synthesis of the RNA cap structure, emphasizing the challenges remaining to design potent and selective drugs.

Specific inhibition of diverse pathogens in human cells by synthetic microRNA-like oligonucleotides inferred from RNAi screens

Proceedings of the National Academy of Sciences, 2014

Systematic genetic perturbation screening in human cells remains technically challenging. Typically, large libraries of chemically synthesized siRNA oligonucleotides are used, each designed to degrade a specific cellular mRNA via the RNA interference (RNAi) mechanism. Here, we report on data from three genome-wide siRNA screens, conducted to uncover host factors required for infection of human cells by two bacterial and one viral pathogen. We find that the majority of phenotypic effects of siRNAs are unrelated to the intended "on-target" mechanism, defined by full complementarity of the 21-nt siRNA sequence to a target mRNA. Instead, phenotypes are largely dictated by "off-target" effects resulting from partial complementarity of siRNAs to multiple mRNAs via the "seed" region (i.e., nucleotides 2-8), reminiscent of the way specificity is determined for endogenous microRNAs. Quantitative analysis enabled the prediction of seeds that strongly and specifically block infection, independent of the intended ontarget effect. This prediction was confirmed experimentally by designing oligos that do not have any on-target sequence match at all, yet can strongly reproduce the predicted phenotypes. Our results suggest that published RNAi screens have primarily, and unintentionally, screened the sequence space of microRNA seeds instead of the intended on-target space of protein-coding genes. This helps to explain why previously published RNAi screens have exhibited relatively little overlap. Our analysis suggests a possible way of identifying "seed reagents" for controlling phenotypes of interest and establishes a general strategy for extracting valuable untapped information from past and future RNAi screens.

RNAi therapeutics: an antiviral strategy for human infections

Current Opinion in Pharmacology, 2020

Gene silencing induced by RNAi represents a promising antiviral development strategy. This review will summarise the current state of RNAi therapeutics for treating acute and chronic human virus infections. The gene silencing pathways exploited by RNAi therapeutics will be described and include both classic RNAi, inducing cytoplasmic mRNA degradation post-transcription and novel RNAi, mediating epigenetic modifications at the transcription level in the nucleus. Finally, the challenge of delivering gene modifications via RNAi will be discussed, along with the unique characteristics of respiratory versus systemic administration routes to highlight recent advances and future potential of RNAi antiviral treatment strategies.

Mechanisms of physiological regulation of RNA synthesis in bacteria: new discoveries breaking old schemes

Journal of Applied Genetics, 2007

Although in bacterial cells all genes are transcribed by RNA polymerase, there are 2 additional enzymes capable of catalyzing RNA synthesis: poly(A) polymerase I, which adds poly(A) residues to transcripts, and primase, which produces primers for DNA replication. Mechanisms of actions of these 3 RNA-synthesizing enzymes were investigated for many years, and schemes of their regulations have been proposed and generally accepted. Nevertheless, recent discoveries indicated that apart from well-understood mechanisms, there are additional regulatory processes, beyond the established schemes, which allow bacterial cells to respond to changing environmental and physiological conditions. These newly discovered mechanisms, which are discussed in this review, include: (i) specific regulation of gene expression by RNA polyadenylation, (ii) control of DNA replication by interactions of the starvation alarmones, guanosine pentaphosphate and guanosine tetraphosphate, (p)ppGpp, with DnaG primase, (iii) a role for the DksA protein in ppGpp-mediated regulation of transcription, (iv) allosteric modulation of the RNA polymerase catalytic reaction by specific inhibitors of transcription, rifamycins, (v) stimulation of transcription initiation by proteins binding downstream of the promoter sequences, and (vi) promoter-dependent control of transcription antitermination efficiency.

Bacterial RNA as a signal Bacterial RNA as a signal to eukaryotic cells as part of the infection process

The discovery of regulatory RNA has identified an underappreciated area for microbial subversion of the host. There is increasing evidence that RNA can be delivered from bacteria to host cells associated with membrane vesicles or by direct release from intracellular bacteria. Once inside the host cell, RNA can act by activating sequence-independent receptors of the innate immune system, where recent findings suggest this can be more than simple pathogen detection, and may contribute to the subversion of immune responses. Sequence specific effects are also being proposed, with examples from nematode, plant and human models providing support for the proposition that bacteria-to-human RNA signaling and the subversion of host gene expression may occur.