Seasonal and diel cycles of fin whale acoustic occurrence near Elephant Island, Antarctica (original) (raw)

Acoustic seasonality, behaviour and detection ranges of Antarctic blue and fin whales under different sea ice conditions off Antarctica

Endangered Species Research

Descriptions of seasonal occurrence and behaviour of Antarctic blue and fin whales in the Southern Ocean are of pivotal importance for the effective conservation and management of these endangered species. We used an autonomous acoustic recorder to collect bioacoustic data from January through September 2014 to describe the seasonal occurrence, behaviour and detection ranges of Antarctic blue and fin whale calls off the Maud Rise, Antarctica. From 2479 h of recordings, we detected D- and Z-calls plus the 27 Hz chorus of blue whales, the 20 and 99 Hz pulses of fin whales and the 18-28 Hz chorus of blue and fin whales. Blue whale calls were detected throughout the hydrophone deployment period with a peak occurrence in February, indicating continuous presence of whales in a broad Southern Ocean area (given the modelled detection ranges). Fin whale calls were detected from January through July when sea ice was present on the latter dates. No temporal segregation in peaks of diel calling...

Calling in the Cold: Pervasive Acoustic Presence of Humpback Whales (Megaptera novaeangliae) in Antarctic Coastal Waters

PLoS ONE, 2013

Humpback whales migrate between relatively unproductive tropical or temperate breeding grounds and productive high latitude feeding areas. However, not all individuals of a population undertake the annual migration to the breeding grounds; instead some are thought to remain on the feeding grounds year-round, presumably to avoid the energetic demands of migration. In the Southern Hemisphere, ice and inclement weather conditions restrict investigations of humpback whale presence on feeding grounds as well as the extent of their southern range.

Acoustic assessment of the seasonal occurrence and behaviour of Antarctic blue whales Balaenoptera musculus intermedia in the southeastern Atlantic and Southern Oceans

2018

The International Whaling Commission (IWC) carried out blue whale research components within its annual austral summer Southern Ocean Whale and Ecosystem Research (SOWER) cruises between 1996 and 2010. Over 700 sonobuoys were deployed to record blue whale vocalizations during 11 Antarctic and three low latitude blue whale cruises off Australia, Madagascar and Chile. The recorded acoustic files from these deployments were collated and reviewed to develop a database of both the digital acoustic files and the associated deployment station metadata of 7,486 acoustic files from 484 stations. Acoustic files were analysed using the automated detection template and visual verification methods. We found a significant difference between the total number of acoustic recording hours (2,481) reported for these cruises (in the associated cruise reports) and the currently available number of acoustic recording hours (1,541). Antarctic blue whale vocalizations (9,315 and 24,902 Dand Z-calls) were d...

Frozen verses: Antarctic minke whales ( Balaenoptera bonaerensis ) call predominantly during austral winter

Royal Society Open Science

The recent identification of the bio-duck call as Antarctic minke whale (AMW) vocalization allows the use of passive acoustic monitoring to retrospectively investigate year-round spatial-temporal patterns in minke whale occurrence in ice-covered areas. Here, we present an analysis of AMW occurrence patterns based on a 9-year passive acoustic dataset (2008–2016) from 21 locations throughout the Atlantic sector of the Southern Ocean (Weddell Sea). AMWs were detected acoustically at all mooring locations from May to December, with the highest presence between August and November (bio-duck calls present at more than 80% of days). At the southernmost recording locations, the bio-duck call was present up to 10 months of the year. Substantial inter-annual variation in the seasonality of vocal activity correlated to variation in local ice concentration. Our analysis indicates that part of the AMW population stays in the Weddell Sea during austral winter. The period with the highest acoustic...

Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales

PLOS ONE, 2017

Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38˚S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is important in improving the management and conservation of this highly depleted species.

Seasonality of blue and fin whale calls west of the Antarctic Peninsula

Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492), 2003

The calling seasonality of blue (Balaenoptera musculus) and fin (B. physalus) whales was assessed using acoustic data recorded on seven autonomous acoustic recording packages (ARPs) deployed from

The Beat Goes On: Humpback Whale Song Seasonality in Antarctic and South African Waters

2022

Little is known of the movements and seasonal occurrence of humpback whales (Megaptera novaeangliae) of South Africa and the Antarctic, populations once brought to near extinction by historic commercial whaling. We investigated the seasonal occurrence and diel-vocalizing pattern of humpback whale songs off the west coast of South Africa (migration route and opportunistic feeding ground) and the Maud Rise, Antarctica (feeding ground), using passive acoustic monitoring data collected between early 2014 and early 2017. Data were collected using acoustic autonomous recorders deployed 200-300 m below the sea surface in waters 855, 1,118 and 4,400 m deep. Acoustic data were manually analyzed for humpback whale vocalizations. While non-song calls were never identified, humpback whale songs were detected from June through December in South African waters, with a peak in percentage of acoustic occurrence around September/October in the austral spring. In Antarctic waters, songs were detected...

The migration of fin whales into the southern Chukchi Sea as monitored with passive acoustics

ICES Journal of Marine Science, 2016

Fin whales (Balaenoptera physalus) undergo seasonal migration in the Arctic Sea. Because their migration and distribution is likely affected by changes in global climate, we aimed to examine the migration timing of fin whales, and the relationship with prey availability within the oceanographic environment of the Arctic Sea, using passive and active acoustic monitoring methods. Automatic Underwater Sound Monitoring Systems were deployed in the southern Chukchi Sea from July 2012 to 2014 to determine the acoustic presence of fin whales. Furthermore, water temperature and salinity were recorded by a fixed data logger. An Acoustic Zooplankton Fish Profiler was additionally deployed to estimate prey abundance through backscattering strength. Sea ice concentrations were obtained by remote sensing data. Fin whale calls were automatically detected using a custom-made software, and the per cent of half-hours containing calls were counted. Fin whale calls were detected from 4 August to 20 Oc...