Marfan and Related Fibrillinopathies (original) (raw)
Related papers
Two mutations in Marfan syndrome resulting in truncated fibrillin polypeptides
Proceedings of the National Academy of Sciences, 1992
Biochemical and molecular genetic studies have recently suggested that mutations in the gene coding for fibrillin on chromosome 15 result in Marfan syndrome. To our knowledge, only one mutation in the fibrillin gene has been published. Here we report the results of screening 20 unrelated MES patients for mutations in fibrillin cDNA by the singlestrand conformation polymorphism technique. We found two mutations, both of which appear in the heterozygote form and code for a shortened fibrillin polypeptide. The first mutation is a large in-frame deletion of 366 bases of the fibrillin mRNA, shown to result in a truncated but secreted polypeptide found in the fibroblast culture of the patient. The second mutation is a G-to-A transition resulting in the substitution of a stop codon for a tryptophan codon and thus predicting the premature termination of the polypeptide chain. We screened 60 other, unrelated MFS patients for these mutations as well as for the previously reported mutation (arginine-239 to proline) and found none of the three mutations in any of these patients. These data suggest that most MFS families carry their own distinct mutation.
The molecular genetics of Marfan syndrome and related microfibrillopathies
Journal of Medical Genetics, 2000
Marfan syndrome (MFS), a relatively common autosomal dominant hereditary disorder of connective tissue with prominent manifestations in the skeletal, ocular, and cardiovascular systems, is caused by mutations in the gene for fibrillin-1 (FBN1). The leading cause of premature death in untreated individuals with MFS is acute aortic dissection, which often follows a period of progressive dilatation of the ascending aorta. Recent research on the molecular physiology of fibrillin and the pathophysiology of MFS and related disorders has changed our understanding of this disorder by demonstrating changes in growth factor signalling and in matrix-cell interactions. The purpose of this review is to provide a comprehensive overview of recent advances in the molecular biology of fibrillin and fibrillin-rich microfibrils. Mutations in FBN1 and other genes found in MFS and related disorders will be discussed, and novel concepts concerning the complex and multiple mechanisms of the pathogenesis of MFS will be explained.
Archives of Internal Medicine, 2001
Background: Marfan syndrome (MFS) is an underrecognized heritable connective tissue disorder resulting from mutations in the gene for fibrillin-1 (FBN1). Affected patients are at risk for aortic dissection and/or severe ocular and orthopedic problems. The diagnosis is primarily based on a set of well-defined clinical criteria (Ghent nosology). The age-related nature of some clinical manifestations and variable phenotypic expression may hinder the diagnosis, particularly in children. Molecular analysis may be helpful to identify at-risk individuals early and start prophylactic medical treatment. FBN1 mutations have also been reported in patients with Marfan-related conditions, but it is unknown what proportion of all FBN1 mutation carriers they represent.
Human Mutation, 2005
Marfan syndrome (MFS) is an autosomal-dominant disorder of the fibrous connective tissue that is typically caused by mutations in the gene coding for fibrillin-1 (FBN1), a major component of extracellular microfibrils. The clinical spectrum of MFS is highly variable and includes involvement of the cardiovascular, skeletal, ocular, and other organ systems; however, the genotype–phenotype correlations have not been well developed. Various screening methods have led to the identification of about 600 different mutations (FBN1-UMD database; www.umd.be). In this study we performed SSCP and/or direct sequencing to analyze all 65 exons of the FBN1 gene in 116 patients presenting with classic MFS or related phenotypes. Twenty-nine novel and nine recurrent mutations were identified in 38 of the analyzed patients. The mutations comprised 18 missense (47%), eight nonsense (21%), and five splice site (13%) mutations. Seven further mutations (18%) resulted from deletion, insertion, or duplication events, six of which led to a frameshift and subsequent premature termination. Additionally, we describe new polymorphisms and sequence variants. On the basis of the data presented here and in a previous study, we were able to establish highly significant correlations between the FBN1 mutation type and the MFS phenotype in a group of 76 mutation-positive patients for whom comprehensive clinical data were available. Most strikingly, there was a significantly lower incidence of ectopia lentis in patients who carried a mutation that led to a premature termination codon (PTC) or a missense mutation without cysteine involvement in FBN1, as compared to patients whose mutations involved a cysteine substitution or splice site alteration. Hum Mutat 26(6), 529–539, 2005. © 2005 Wiley-Liss, Inc.
Nucleic Acids Research, 1997
Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromo- some 15 (FBN1) were described at first in the heritable connective tissue disorder, Marfan syndrome (MFS). More recently, FBN1 has also been shown to harbor mutations related to a spectrum of conditions pheno- typically related to MFS. These mutations are private, essentially missense, generally non-recurrent
Human Mutation, 2005
Marfan Syndrome (MFS) is an autosomal dominant disorder of the connective tissue due to mutations of Fibrillin-1 gene (FBN1) in more than 90% of cases and Transforming Growth Factor-Beta-Receptor2 gene (TGFB2R) in a minority of cases. Genotyping is relevant for diagnosis and genotype-phenotype correlations. We describe the FBN1 genotypes and related phenotypes of 81 patients who were referred to our attention for MFS or Marfan-like phenotypes. Patients underwent multidisciplinary pertinent evaluation in the adult or paediatric setting, according to their age. The diagnosis relied on Ghent criteria. To optimise DHPLC analysis of the FBN1 gene, all coding regions of the gene were directly sequenced in 19 cases and 10 controls: heterozygous amplicons were used as true positives. DHPLC sensitivity was 100%. Then, DHPLC was used to screen 62 other cases. We identified 74 FBN1 mutations in 81 patients: 64 were novel and 17 known. Of the 81 mutations, 41 were missense (50.6%), 27, either nonsense or frameshift mutations and predicted a premature termination codon (PTC) (33%), 11 affected splice sites (13.6%), and two predicted in-frame deletions (2.5%). Most mutations (67.9%) occurred in cbEGF-like modules. Genotype was clinically relevant for early diagnosis and conclusion of the diagnostic work-up in patients with incomplete or atypical phenotypes. © 2005 Wiley-Liss, Inc.