Numerical Simulation of Shock-Turbulence Interactions Using High-Order Shock-Fitting Algorithms (original) (raw)

Direct numerical simulation of the interaction of isotropic turbulence with a shock wave using shock-fitting

Comptes Rendus Mecanique, 2005

The interaction of three-dimensional isotropic turbulence with a plane shock at Mach numbers of M = 2.0 and M = 3.0 is investigated via direct numerical simulation. The numerical scheme is based on a characteristic-type formulation of the Navier-Stokes equations and uses fifth-order upwind schemes in space, a fourth order Runge Kutta scheme in time and a shock-fitting as inlet condition. The isotropic turbulence was generated in a separate computation based on a prescribed energy spectrum. This turbulent flow is considered as frozen, and is convected through the shock with a prescribed average shock speed. An FFT interpolation is used to obtain the upstream values at the instantaneous shock location. Turbulence enhancement is observed, and the evolution of velocity fluctuations as well as turbulence microscales are in good agreement with the behaviour observed using shock-capturing. To cite this article: J. Sesterhenn et al., C. R. Mecanique 333 (2005).

Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence

Applied scientific research, 1995

Direct Numerical Simulation (DNS) and linear analysis of a shock interacting with incompressible and compressible isotropic turbulence is conducted. A dependence of amplification ratios on the degree of compressibility of the incoming flow is found. It can be shown that the enhancement of rms values of turbulent quantifies across the shock varies according to the ratio of compressible to incompressible kinetic energy X (exact definition see eq. 8). Inflow conditions with high values of X display reduced amplification ratios of TKE and thermodynamic quantities while vorticity fluctuations are enhanced more strongly. The different behaviour of the turbulent kinetic energy (TKE) is due to the reduced pressure diffusion term in the TKE-equation. Experiments show qualitatively a similar behaviour as the simulation with incompressible inflow conditions, but they could so far not confirm our findings of reduced amplification rates in the compressible case, one of the reasons being the lack of knowledge of all flow parameters upstream of the shock front and the inability to generate isotropic turbulence in real life experiments. For the DNS we use a third order in space shock-capturing scheme based on the ENO algorithm of Harten [10] together with an approximate Riemann solver. This non-TVD scheme turned out to have many advantages over other common Godunov-type high resolution schemes for the specific problem of a shock interacting with turbulent fields.

Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves

Journal of Computational Physics, 2010

Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.

Interaction of a thin shock with turbulence. I. Effect on shock structure: Analytic model

Physics of Fluids, 2008

BOUTþþ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUTþþ, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, nonorthogonal toroidal field-aligned coordinate systems and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUTþþ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry. [

Nonlinear Strong Shock Interactions: A Shock-Fitted Approach

Theoretical and Computational Fluid Dynamics, 1998

This paper addresses nonlinear effects which result from the interaction of shock waves with vortices. A series of experiments are carried out, which involve the interaction of a strong shock wave with a single plane vorticity wave and a randomly distributed wave system. These experiments are first conducted in the linear regime to obtain a mutual verification of theory and computation. They are subsequently extended into the nonlinear regime. A systematic study of the interaction of a plane shock wave and a single vortex is then conducted. Specifically, we investigate the conditions under which nonlinear effects become important, both as a function of shock Mach number, M 1, and incident vortex strength (characterized by its circulation Γ). The shock Mach number is varied from 2 to 8, while the circulation of the vortex is varied from infinitesimally small values (linear theory) to unity. Budgets of vorticity, dilatation, and pressure are obtained. They indicate that nonlinear effects become more significant as both the shock Mach number and the circulation increase. For Mach numbers equal to 5 and above, the dilatation in the vortex core grows quadratically with circulation. An acoustic wave propagates radially outward from the vortex center. As circulation increases, its upstream-facing front steepens at low Mach numbers, and its downstream-facing front steepens at high Mach numbers. A high Mach number asymptotic expansion of the Rankine--Hugoniot conditions reveals that nonlinear effects dominate both the shock motion and the downstream flow for ΓM 1 > 1.

Shock-vortex interactions at high Mach numbers

Journal of scientific computing, 2003

We perform a computational study of the interaction of a planar shock wave with a cylindrical vortex. We use a particularly robust High Resolution Shock Capturing scheme, Marquina's scheme, to obtain high quality, high resolution numerical simulations of the interaction. In the case of a very-strong shock/vortex encounter, we observe a severe reorganization of the flow field in the downstream region, which seems to be due mainly to the strength of the shock. The numerical data is analyzed to study the driving mechanisms for the production of vorticity in the interaction.