Hydrogen storage technology options for fuel cell vehicles: Well-to-wheel costs, energy efficiencies, and greenhouse gas emissions (original) (raw)
2011, International Journal of Hydrogen Energy
Hydrogen fuel efficiency Hydrogen delivery infrastructure Hydrogen greenhouse gas emissions a b s t r a c t Five different hydrogen vehicle storage technologies are examined on a Well-to-Wheel basis by evaluating cost, energy efficiency, greenhouse gas (GHG) emissions, and performance. The storage systems are gaseous 350 bar hydrogen, gaseous 700 bar hydrogen, Cold Gas at 500 bar and 200 K, Cryo-Compressed Liquid Hydrogen (CcH2) at 275 bar and 30 K, and an experimental adsorbent material (MOF 177)-based storage system at 250 bar and 100 K. Each storage technology is examined with several hydrogen production options and a variety of possible hydrogen delivery methods. Other variables, including hydrogen vehicle market penetration, are also examined. The 350 bar approach is relatively costeffective and energy-efficient, but its volumetric efficiency is too low for it to be a practical vehicle storage system for the long term. The MOF 177 system requires liquid hydrogen refueling, which adds considerable cost, energy use, and GHG emissions while having lower volumetric efficiency than the CcH2 system. The other three storage technologies represent a set of trade-offs relative to their attractiveness. Only the CcH2 system meets the critical Department of Energy (DOE) 2015 volumetric efficiency target, and none meet the DOE's ultimate volumetric efficiency target. For these three systems to achieve a 480-km (300-mi) range, they would require a volume of at least 105e175 L in a mid-size FCV.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact