Lipid-exchange in nanodiscs discloses membrane boundaries of cytochrome-P450 reductase (original) (raw)
Related papers
Picturing the Membrane-assisted Choreography of Cytochrome P450 with Lipid Nanodiscs
Chemphyschem : a European journal of chemical physics and physical chemistry, 2018
Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, and requires enzymatic partners as well as environmental factors that tune its complex dynamic activity. P450 and its reducing counterparts are membrane-bound proteins which are believed to dynamically interact to form functional complexes. Increasing experimental evidence signifies the role (s) of protein-lipid interactions in P450's catalytic function and efficiency. The challenges posed by the membrane have severely limited high-resolution understanding of the molecular interfaces of these interactions. Nevertheless, recent NMR studies have provided piercing insights into the dynamic structural interactions that enable the function of P450. In this review, we will discuss different biomimetic approaches relevant to unveil molecular interplays at the membrane, focusing on our recent work on lipid-nanodiscs. We also highlight the need to expand the use of nanodiscs, and the power of a com...
Nanodiscs in the Studies of Membrane-Bound Cytochrome P450 Enzymes
Methods in Molecular Biology, 2013
Cytochromes P450 from Eukaryotes and their native redox partners cytochrome P450 reductases both belong to the class of monotopic membrane proteins containing one transmembrane anchor. Incorporation into the lipid bilayer significantly affects their equilibrium and kinetic properties and plays an important role in their interactions. We describe here the detailed protocols developed in our group for the functional self-assembly of mammalian cytochromes P450 and cytochrome P450 reductases into Nanodiscs with controlled lipid composition. The resulting preparations are fully functional, homogeneous in size, composition and oligomerization state of the heme enzyme, and show an improved stability with respect to P420 formation. We provide a brief overview of applications of Nanodisc technology to the biophysical and biochemical mechanistic studies of cytochromes P450 involved in steroidogenesis, and of the most abundant xenobiotic metabolizing human cytochrome P450 CYP3A4.
Biochemistry, 2016
Membrane-bound cytochrome P4503A4 (CYP3A4) is the major source of enzymatic drug metabolism. Although several structural models of CYP3A4 in various ligand complexes are available, none includes a lipid bilayer. Details of the effects of the membrane on protein dynamics and solvation, and access channels for ligands, remain uncertain. H/D exchange mass spectrometry (H/DXMS) with ligand free CYP3A4 containing a deletion of residues 3-12, compared to that of the full length wild type, in lipid nanodiscs afforded 91% sequence coverage. Deuterium exchange was fast in the F-and G-helices, HI loop, and C-terminal loop. In contrast, there is very low exchange in the F′-and G′-helices. The results are consistent with the overall membrane orientation of CYP3A4 suggested by published MD simulations and spectroscopic results, and the solvent accessibility of the F/G loop suggests that it is not deeply membrane-embedded. Addition of ketoconazole results in only modest, but global, changes in solvent accessibility. Interestingly, with ketoconazole bound some peptides become less solvent accessible or dynamic, including the F-and G-helices, but several peptides demonstrate modestly increased accessibility. Differential scanning calorimetry (DSC) of CYP3A4-nanodiscs suggests membrane-induced stabilization compared to that of aggregated CYP3A4 in buffer, and this stabilization is enhanced upon addition of the ligand ketoconazole. This ligand-induced stabilization is accompanied by a very large increase in ΔH for CYP3A4 denaturation in nanodiscs, possibly due to increased CYP3A4membrane interactions. Together, the results suggest a distinct orientation of CYP3A4 on the lipid membrane, and they highlight likely solvent access channels, which are consistent with several MD simulations.
Scientific Reports, 2018
Cytochrome P450 oxidoreductase (POR) is the primary electron donor in eukaryotic cytochrome P450 (CYP) containing systems. A wealth of ensemble biophysical studies of Cytochrome P450 oxidoreductase (POR) has reported a binary model of the conformational equilibrium directing its catalytic efficiency and biomolecular recognition. In this study, full length POR from the crop plant Sorghum bicolor was site-specifically labeled with Cy3 (donor) and Cy5 (acceptor) fluorophores and reconstituted in nanodiscs. Our single molecule fluorescence resonance energy transfer (smFRET) burst analyses of POR allowed the direct observation and quantification of at least three dominant conformational sub-populations, their distribution and occupancies. Moreover, the state occupancies were remodeled significantly by ionic strength and the nature of reconstitution environment, i.e. phospholipid bilayers (nanodiscs) composed of different lipid head group charges vs. detergent micelles. The existence of c...
Modulation of the Cytochrome P450 Reductase Redox Potential by the Phospholipid Bilayer
Biochemistry, 2009
Cytochrome P450 reductase (CPR) is a tethered membrane protein which transfers electrons from NADPH to microsomal P450s. We show that the lipid bilayer has a role in defining the redox potential of the CPR flavin domains. In order to quantitate the electrochemical behavior of this central redox protein, full length CPR was incorporated into soluble nanometer scale discoidal membrane bilayers (Nanodiscs) and potentials measured using spectro-potentiometry. The redox potentials of both FMN and FAD were found to shift to more positive values when in a membrane bilayer as compared to a solubilized version of the reductase. The potentials of the semiquinone/hydroquinone couple of both FMN and FAD are altered to a larger extent than the oxidized/semiquinone couple which is understood by a simple electrostatic model. When anionic lipids were used to change the membrane composition of the CPR-Nanodisc, the redox potential of both flavins became more negative, favoring electron transfer from CPR to cytochrome P450.
2019
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein capable of donating the second electron to cytochrome P450s (CYP P450s) in the CYP P450s monooxygenase reactions. Recent studies have demonstrated the importance of the transmembrane domain of cytb5 in the interaction with cytP450 by stabilizing its monomeric structure. While recent NMR studies have provided high-resolution insights into the structural interactions between the soluble domains of ~16-kDa cytb5 and ~57-kDa cytP450 in a membrane environment, there is need for studies to probe the residues in the transmembrane region as well as to obtain intermolecular distance constraints to better understand the very large size cytb5-cytP450 complex structure in a near native membrane environment. In this study, we report the expression, purification, functional reconstitution of 19 F-labeled full-length rabbit cytb5 in peptide based nanodiscs for structural studies using NMR spectroscopy. Size exclusion chromatography, dynamic light scattering, transmission electron microscopy, and NMR experiments show a stable reconstitution of cytb5 in 4F peptide-based lipidnanodiscs. Our results demonstrate that the use of peptide-nanodiscs containing cytb5 19 F-labeled with 5-fluorotryptophan (5FW) enables, for the first time, the detection of residues from the transmembrane domain in different lipid compositions by solution 19 F NMR experiments. 19 F NMR results revealing the interaction of the transmembrane domain of cytb5 with the full-length rabbit Cytochrome P450 2B4 (CYP2B4) are also presented. We expect the results presented in this study to be useful to devise approaches to probe the structure, dynamics and functional roles of transmembrane domains of a membrane protein, and also to measure intermolecular 19 F-19 F distance constraints to determine the structural interactions between the transmembrane domains.
Biophysical journal, 2014
NADPH-cytochrome P450 oxidoreductase (CYPOR) is an essential redox partner of the cytochrome P450 (cyt P450) superfamily of metabolic enzymes. In the endoplasmic reticulum of liver cells, such enzymes metabolize ~75% of the pharmaceuticals in use today. It is known that the transmembrane domain of CYPOR plays a crucial role in aiding the formation of a complex between CYPOR and cyt P450. Here we present the transmembrane structure, topology, and dynamics of the FMN binding domain of CYPOR in a native membrane-like environment. Our solid-state NMR results reveal that the N-terminal transmembrane domain of CYPOR adopts an α-helical conformation in the lipid membrane environment. Most notably, we also show that the transmembrane helix is tilted ~13° from the lipid bilayer normal, and exhibits motions on a submillisecond timescale including rotational diffusion of the whole helix and fluctuation of the helical director axis. The approaches and the information reported in this study woul...
Journal of the American Chemical Society, 2017
Cytochrome P450-reductase (CPR) is a versatile NADPH-dependent electron donor located in the cytoplasmic side of the endoplasmic reticulum. It is an electron transferase that is able to deliver electrons to a variety of membrane-bound oxidative partners, including the drug-metabolizing enzymes of the cytochrome P450s (P450). CPR is also stoichiometrically limited compared to its oxidative counterparts, and hypotheses have arisen about possible models that can overcome the stoichiometric imbalance, including quaternary organization of P450 and diffusion-limited models. Described here are results from a single-protein tracking study of fluorescently labeled CPR and cytochrome P450 2C9 (CYP2C9) molecules in which stochastic analysis was used to determine the dissociation constants of CPR/CYP2C9 complexes in a lipid bilayer membrane for the first time. Single-protein trajectories demonstrate the transient nature of these CPR-CYP2C9 interactions, and the measured Kd values are highly dep...
Biochimica Et Biophysica Acta-proteins and Proteomics, 2011
The NADPH-dependent cytochrome P450 reductase (CPR) is a key electron donor to eucaryotic cytochromes P450 (CYPs). CPR shuttles electrons from NADPH through the FAD and FMN-coenzymes into the iron of the prosthetic heme-group of the CYP. In the course of these electron transfer reactions, CPR undergoes large conformational changes. This mini-review discusses the new evidence provided for such conformational changes involving a combination of a "swinging" and "rotating" model and highlights the molecular mechanisms by which formation of these conformations are controlled and thereby enables CPR to serve as an effective electron transferring "nano-machine".