Electrospun poly (N-isopropylacrylamide-co-acrylic acid)/cellulose laurate blend nanofibers containing adapalene: Morphology, drug release, and cell culture studies (original) (raw)
Related papers
Scientific reports, 2017
New biomaterials are sought for the development of bioengineered nanostructures. In the present study, electrospun nanofibers have been synthesized by using poly(methyl vinyl ether-alt-maleic acid) and poly(methyl vinyl ether-alt-maleic ethyl monoester) (PMVEMA-Ac and PMVEMA-ES, respectively) as building polymers for the first time. To further functionalize these materials, nanofibers of PMVEMA-Ac and PMVEMA-ES containing a conjugated polyelectrolyte (HTMA-PFP, blue emitter, and HTMA-PFNT, red emitter) were achieved with both forms maintaining a high solid state fluorescence yield without altered morphology. Also, 5-aminolevulinic acid (5-ALA) was incorporated within these nanofibers, where it remained chemically stable. In all cases, nanofiber diameters were less than 150 nm as determined by scanning and transmission electron microscopy, and encapsulation efficiency of 5-ALA was 97 ± 1% as measured by high-performance liquid chromatography. Both polymeric matrices showed rapid rele...
Open Journal of Biophysics, 2013
Here we report electrospinning of Poly(dimethylsiloxane-b-vinyl pyrrolidone) (PDMS-b-PVP) based fibrous scaffold materials. The morphology, thermal properties, surface composition, hydrophilicity and fibers formation with different PDMS and PVP chain lengths were determined by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray photoelectron microscopy (XPS) and X-ray diffraction (RXD) water vapor uptake and water contact angle (WCA). The electrospinning parameters were controlled as well as fiber deposition area. The influence of polymer solution concentration on the morphology of electrospun fibers was also investigated. We checked out the applicability of the electrospun fibers for tissue engineering by the investigation of their capability to support fibroblast cell adhesion, cell growth and proliferation.
Processing of polymer nanofibers through electrospinning as drug delivery systems
Materials Chemistry and Physics, 2009
The use of electrospun fibers as drug carriers could be promising in the future for biomedical applications, especially postoperative local chemotherapy. In this research work, electrospun fibers were developed as a new system for the delivery of ketoprofen as non-steroidal anti-inflammatory drug (NSAID). The fibers were made either from polycaprolactone (PCL) as a biodegradable polymer or polyurethane (PU) as a non-biodegradable polymer, or from the blends of the two. The release of the ketoprofen was followed by UV–vis spectroscopy in phosphate buffer of pH 7.4 at 37 and 20 °C.The results showed that the release rates from the polycaprolactone, polyurethane and their blend are similar. However, the blend of the polycaprolactone with polyurethane improved its visual mechanical properties. Release profiles from the electrospun mats were compared to cast films of the various formulations.
Materials, 2022
The present study aimed to prepare nanofibers by electrospinning in the system polylactic acid-hydroxyapatite-doxycycline (PLA-HAP-Doxy) to be used as a drug delivery vehicle. Two different routes were employed for the preparation of Doxy-containing nanofibers: Immobilization on the electrospun mat’s surface and encapsulation in the fiber structure. The nanofibers obtained by Doxy encapsulation were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric (TG) and differential thermal analyses (DTA) and scanning electron microscopy (SEM). The adsorption properties of pure PLA and PLA-HAP nanofibers were investigated for solutions with different Doxy concentrations (3, 7 and 12 wt%). Moreover, the desorption properties of the active substance were tested in two different fluids, simulated body fluid (SBF) and phosphate buffer solution (PBS), to evidence the drug release properties. In vitro drug release studies were performed and different drug release ki...
Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy
Nanomaterials, 2019
Polymeric nanofibers (NFs) have been extensively reported as a biocompatible scaffold to be specifically applied in several researching fields, including biomedical applications. The principal researching lines cover the encapsulation of antitumor drugs for controlled drug delivery applications, scaffolds structures for tissue engineering and regenerative medicine, as well as magnetic or plasmonic hyperthermia to be applied in the reduction of cancer tumors. This makes NFs useful as therapeutic implantable patches or mats to be implemented in numerous biomedical researching fields. In this context, several biocompatible polymers with excellent biocompatibility and biodegradability including poly lactic-co-glycolic acid (PLGA), poly butylcyanoacrylate (PBCA), poly ethylenglycol (PEG), poly (ε-caprolactone) (PCL) or poly lactic acid (PLA) have been widely used for the synthesis of NFs using the electrospun technique. Indeed, other types of polymers with stimuli-responsive capabilities...
Molecules
In this study, poly(AA-co-ACMO) and polyurethane-based nanofibers were prepared in a ratio of 1:1 (NF11) and 2:1 (NF21) as antimicrobial carriers for chronic wound management. Different techniques were used to characterize the nanofibers, and poly(AA-co-ACMO) was mostly found on the surface of PU. With an increase in poly(AA-co-ACMO) dose from 0 (PU) and 1:1 (NF11) to 2:1 (NF21) in the casting solution, the contact angle (CA) was reduced from 137 and 95 to 24, respectively, and hydrophilicity was significantly increased. As most medications inhibit biological processes by binding to a specific protein, in vitro protein binding was investigated mechanistically using a stopped-flow technique. Both NF11 and NF21 bind to BSA via two reversible steps: a fast second-order binding followed by a slow first-order one. The overall parameters for NF11 (Ka = 1.1 × 104 M−1, Kd = 89.0 × 10−6, ΔG0 = −23.1 kJ mol−1) and NF21 (Ka = 189.0 × 104 M−1, Kd = 5.3 × 10−6 M, ΔG0 = −27.5 kJ mol−1) were deter...
Journal of Polymer Engineering, 2015
A model anti-cancer/tumor drug cis-diammineplatinum (II) dichloride (cisplatin) was loaded into micro- and nanofibers of cellulose, cellulose acetate (CA) and poly(ethylene oxide) (PEO), using various electrospinning techniques. Single-nozzle electrospinning was used to fabricate neat fibers of each category. Drug loading in cellulose fibers was performed using single-nozzle electrospinning. Encapsulation of cisplatin in CA and PEO-based fibers was performed using coaxial electrospinning. Morphological analysis of the fibers was performed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The various categories of fibers exhibited diverse morphological features depending on the material compositions and applied process parameters. The drug-loaded cellulose nanofibers showed attached particles on the surface. These particles were composed of both the polymer and the drug. The CA-cisplatin fibers exhibited drug encapsulation within various diverse...
Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances
Carbohydrate Polymers, 2018
Highlights The new strategies of electrospinning technique to create functional CA nanofibers illustrated. The various types of therapeutic agents incorporated into electrospun CA fibers discussed. The particular characteristics of CA electrospun nanofibers loaded with therapeutic agents have defined. The advantages of CA nanofibers especially in topical/transdermal drug delivery systems (DDSs) were described.
Drug release rate and kinetic investigation of composite polymeric nanofibers
2016
Objective(s): In this work, electrospun nanofibers were explored as drug delivery vehicles using tetracycline as a model drug. Nanocomposite fibers including chitosan (CS)/poly (ethylene oxide) (PEO) and antibiotic were successfully prepared using electrospinning. CS blended with PEO considering a weight ratio of (90/10), and then, nanofibrous samples were successfully electrospun from their aqueous solutions. Afterwards, tetracycline was added to these samples for producing wound dressing materials. Methods: Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used for the evaluation of morphology and biodegradability studies of CS/PEO blend nanofibrous. The kinetic and drug release mechanism of drug-loaded electrospun samples were also investigated by ultraviolet-visible spectrophotometry (UV-Vis) and the appropriate model was proposed for prediction of drug release. Results: The results have indicated that the addition of tetracycline as muc...