CfA3: 185 Type Ia Supernova Light Curves from the CfA (original) (raw)

CfAIR2: NEAR-INFRARED LIGHT CURVES OF 94 TYPE Ia SUPERNOVAE

The Astrophysical Journal Supplement Series, 2015

CfAIR2 is a large homogeneously reduced set of near-infrared (NIR) light curves for Type Ia supernovae (SN Ia) obtained with the 1.3m PAIRITEL (Peters Automated InfraRed Imaging TELescope). This data set includes 4607 measurements of 94 SN Ia and 4 additional SN Iax observed from 2005-2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes JHK s photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z ∼ 0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from maximum in the B-band. More than half of the light curves begin before the time of maximum and the coverage typically contains ∼ 13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for supernova cosmology studies in the NIR. Because SN Ia are approximately standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help us develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.

CfA4: Light Curves for 94 Type Ia Supernovae

We present multi-band optical photometry of 94 spectroscopically-confirmed Type Ia supernovae (SN Ia) in the redshift range 0.0055 to 0.073, obtained between 2006 and 2011. There are a total of 5522 light curve points. We show that our natural system SN photometry has a precision of roughly 0.03 mag or better in BVr'i', 0.06 mag in u', and 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BVr'i'u'U, respectively. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of ~0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al (in prep.). This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well-characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SN Ia is now sufficiently large to remove most of the statistical sampling error from the dark energy error budget. But pursuing the dark-energy systematic errors by determining highly-accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SN Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples.

The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints

Astronomy & Astrophysics, 2010

We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. A flat LambdaCDM cosmological fit to 231 SNLS high redshift Type Ia supernovae alone gives Omega_M = 0.211 +/- 0.034(stat) +/- 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of +/- 0.026 on Omega_M. No clear evidence is found for a possible evolution of the slope (beta) of the colour-luminosity relation with redshift.

COSMOLOGY WITH PHOTOMETRIC SURVEYS OF TYPE Ia SUPERNOVAE

The Astrophysical Journal, 2010

We discuss the extent to which photometric measurements alone can be used to identify Type Ia supernovae (SNIa) and to determine the redshift and other parameters of interest for cosmological studies. We fit the light curve data of the type expected from a survey such as the one planned with the Large Synoptic Survey Telescope (LSST) and also to remove the contamination from the core-collapse supernovae to SNIa samples. We generate 1000 SNIa mock flux data for each of the LSST filters based on existing design parameters, then use a Markov Chain Monte-Carlo (MCMC) analysis to fit for the redshift, apparent magnitude, stretch factor and the phase of the SNIa. We find that the model fitting works adequately well when the true SNe redshift is below 0.5, while at z < 0.2 the accuracy of the photometric data is almost comparable with spectroscopic measurements of the same sample. We discuss the contamination of Type Ib/c (SNIb/c) and Type II supernova (SNII) on the SNIa data set. We find it is easy to distinguish the SNII through the large χ 2 mismatch when fitting to photometric data with Ia light curves. This is not the case for SNIb/c. We implement a statistical method based on the Bayesian estimation in order to statistically reduce the contamination from SNIb/c for cosmological parameter measurements from the whole SNe sample. The proposed statistical method also evaluate the fraction of the SNIa in the total SNe data set, which provides a valuable guide to establish the degree of contamination.

Results of the Lick Observatory Supernova Search Follow-up Photometry Program: BVRI Light Curves of 165 Type Ia Supernovae

The Astrophysical …, 2010

We present BVRI light curves of 165 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search follow-up photometry program from 1998 through 2008. Our light curves are typically well sampled (cadence of 3-4 days) with an average of 21 photometry epochs. We describe our monitoring campaign and the photometry reduction pipeline that we have developed. Comparing our data set to that of Hicken et al., with which we have 69 overlapping supernovae (SNe), we find that as an ensemble the photometry is consistent, with only small overall systematic differences, although individual SNe may differ by as much as 0.1 mag, and occasionally even more. Such disagreement in specific cases can have significant implications for combining future large data sets. We present an analysis of our light curves which includes template fits of light-curve shape parameters useful for calibrating SNe Ia as distance indicators. Assuming the B − V color of SNe Ia at 35 days past maximum light can be presented as the convolution of an intrinsic Gaussian component and a decaying exponential attributed to host-galaxy reddening, we derive an intrinsic scatter of σ = 0.076 ± 0.019 mag, consistent with the Lira-Phillips law. This is the first of two papers, the second of which will present a cosmological analysis of the data presented herein.

The carnegie supernova project: analysis of the first sample of low-redshift type-Ia supernovae

The Astronomical …, 2010

An analysis of the first set of low-redshift (z<0.08) Type Ia supernovae monitored by the Carnegie Supernova Project between 2004 and 2006 is presented. The data consist of well-sampled, high-precision optical (ugriBV ) and near-infrared (NIR; Y JHK s ) light curves in a well-understood photometric system. Methods are described for deriving light-curve parameters, and for building template light curves which are used to fit Type Ia supernova data in the ugriBV Y JH bands. The intrinsic colors at maximum light are calibrated using a subsample of supernovae assumed to have suffered little or no reddening, enabling color excesses to be estimated for the full sample. The optical-NIR color excesses allow the properties of the reddening law in the host galaxies to be studied. A low average value of the total-to-selective absorption coefficient, R V ≈ 1.7, is derived when using the entire sample of supernovae. However, when the two highly reddened supernovae (SN 2005A and SN 2006X) in the sample are excluded, a value R V ≈ 3.2 is obtained, similar to the standard value for the Galaxy. The red colors of these two events are well matched by a model where multiple scattering of photons by circumstellar dust steepens the effective extinction law. The absolute peak magnitudes of the supernovae are studied in all bands using a two-parameter linear fit to the decline 1 This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

The Carnegie Supernova Project-I: Correlation between Type Ia Supernovae and Their Host Galaxies from Optical to Near-infrared Bands

The Astrophysical Journal, 2020

We present optical and near-infrared (ugriY JH) photometry of host galaxies of Type Ia supernovae (SN Ia) observed by the Carnegie Supernova Project-I. We determine host galaxy stellar masses and, for the first time, study their correlation with SN Ia standardized luminosity across optical and nearinfrared (uBgV riY JH) bands. In the individual bands, we find that SNe Ia are more luminous in more massive hosts with luminosity offsets ranging between −0.07±0.03 mag to −0.15±0.04 mag after lightcurve standardization. The slope of the SN Ia Hubble residual-host mass relation is negative across all uBgV riY JH bands with values ranging between −0.036±0.025 mag/dex to −0.097±0.027 mag/deximplying that SNe Ia in more massive galaxies are brighter than expected. The near-constant observed correlations across optical and near-infrared bands indicate that dust may not play a significant role in the observed luminosity offset-host mass correlation. We measure projected separations between SNe Ia and their host centers, and find that SNe Ia that explode beyond a projected 10 kpc have a 30% to 50% reduction of the dispersion in Hubble residuals across all bands-making them a more uniform subset of SNe Ia. Dust in host galaxies, peculiar velocities of nearby SN Ia, or a combination of both may drive this result as the color excesses of SNe Ia beyond 10 kpc are found to be generally lower than those interior, but there is also a diminishing trend of the dispersion as we exclude nearby events. We do not find that SN Ia average luminosity varies significantly when they are grouped in various host morphological types. Host galaxy data from this work will be useful, in conjunction with future high-redshift samples, in constraining cosmological parameters.

The Pantheon+ Type Ia Supernova Sample: The Full Dataset and Light-Curve Release

2021

Here we present 1701 light curves of spectroscopically confirmed Type Ia supernovae (SNe Ia) that will be used to infer cosmological parameters as part of the Pantheon+ SN analysis and the SH0ES (Supernovae and H0 for the Equation of State of dark energy) distance-ladder analysis. This effort is one part of a series of works that perform an extensive review of redshifts, peculiar velocities, photometric calibration, and intrinsic-scatter models of SNe Ia. The total number of light curves, which are compiled across 18 different surveys, is a significant increase from the first Pantheon analysis (1048 SNe), particularly at low redshift (z). Furthermore, unlike in the Pantheon analysis, we include light curves for SNe with z<0.01 such that SN systematic covariance can be included in a joint measurement of the Hubble constant (H_0) and the dark energy equation-of-state parameter (w). We use the large sample to compare properties of 170 SNe Ia observed by multiple surveys and 12 pairs...

Absolute Distances to Nearby Type Ia Supernovae via Light Curve Fitting Methods

Publications of the Astronomical Society of the Pacific

We present a comparative study of absolute distances to a sample of very nearby, bright Type Ia supernovae (SNe) derived from high cadence, high signal-to-noise, multi-band photometric data. Our sample consists of four SNe: 2012cg, 2012ht, 2013dy and 2014J. We present new homogeneous, high-cadence photometric data in Johnson-Cousins BV RI and Sloan g ′ r ′ i ′ z ′ bands taken from two sites (Piszkesteto and Baja, Hungary), and the light curves are analyzed with publicly available light curve fitters (MLCS2k2, SNooPy2 and SALT2.4). When comparing the best-fit parameters provided by the different codes, it is found that the distance moduli of moderately-reddened SNe Ia agree within 0.2 mag, and the agreement is even better ( 0.1 mag) for the highest signal-to-noise BV RI data. For the highly-reddened SN 2014J the dispersion of the inferred distance moduli is slightly higher. These SN-based distances are in good agreement with the Cepheid distances to their host galaxies. We conclude that the current state-of-the-art light curve fitters for Type Ia SNe can provide consistent absolute distance moduli having less than ∼ 0.1 -0.2 mag uncertainty for nearby SNe. Still, there is room for future improvements to reach the desired ∼ 0.05 mag accuracy in the absolute distance modulus.

The First Data Release of CNIa0.02—A Complete Nearby (Redshift <0.02) Sample of Type Ia Supernova Light Curves*

The Astrophysical Journal Supplement Series

The CNIa0.02 project aims to collect a complete, nearby sample of Type Ia supernovae (SNe Ia) light curves, and the SNe are volume-limited with host-galaxy redshifts z host < 0.02. The main scientific goal is to infer the distributions of key properties (e.g., the luminosity function) of local SNe Ia in a complete and unbiased fashion in order to study SN explosion physics. We spectroscopically classify any SN candidate detected by the All-Sky Automated Survey for Supernovae (ASAS-SN) that reaches a peak brightness <16.5 mag. Since ASAS-SN scans the full sky and does not target specific galaxies, our target selection is effectively unbiased by host-galaxy properties. We perform multiband photometric observations starting from the time of discovery. In the first data release (DR1), we present the optical light curves obtained for 247 SNe from our project (including 148 SNe in the complete sample), and we derive parameters such as the peak fluxes, Δm 15, and s BV .