Purification of plasmid DNA from clarified and non-clarified Escherichia coli lysates by berenil pseudo-affinity chromatography (original) (raw)
Related papers
Journal of Chromatography A, 2005
The current study explores the possibility of using a polyethyleneglycol(PEG)/ammonium sulphate aqueous two-phase system (ATPS) as an early step in a process for the purification of a model 6.1 kbp plasmid DNA (pDNA) vector. Neutralised alkaline lysates were fed directly to ATPS. Conditions were selected to direct pDNA towards the salt-rich bottom phase, so that this stream could be subsequently processed by hydrophobic interaction chromatography (HIC). Screening of the best conditions for ATPS extraction was performed using three PEG molecular weights (300, 400, 600) and varying the tie-line length, phase volume ratio and lysate load. For a 20 % (w/w) lysate load, the best results were obtained with PEG 600 using the shortest tie-line (38.16 % w/w). By further manipulating the system composition along this tie-line in order to obtain a top/bottom phase volume ratio of 9.3 (35 % w/w PEG 600, 6% w/w NH 4 ) 2 SO 4 ), it was possible to recover 100 % of pDNA in the bottom phase with a 3fold increase in concentration. Further increase in the lysate load up to 40 %(w/w) with this system resulted in a 8-fold increase in pDNA concentration, but with a yield loss of 15 %. The ATPS extraction was integrated with HIC and the overall process compared with a previously defined process that uses sequential precipitations with isopropanol and ammonium sulphate prior to HIC. Although the final yield is lower in the ATPS-based process the purity grade of the final pDNA product is higher. This shows that it is possible to substitute the time-consuming two-step precipitation procedure by a simple ATPS extraction.
Journal of Chromatography A, 2013
Affinity chromatography represents a sole technique in purification of different biomolecules. The specific recognition between affinity ligands and target biomolecules has a major role in the specificity of the process. Therefore, choosing the right ligand is a crucial step for the development of a successful purification system. This work describes the application of the DNA intercalator 3,8-diamino-6-phenylphenanthridine (DAPP) as a chromatographic affinity ligand for the specific separation and purification of supercoiled plasmid DNA (pDNA). The support was prepared by coupling DAPP onto an epoxy-activated Sepharose matrix, using mild conditions and resulting in a ligand density of 0.15 mmol DAPP/g derivatized Sepharose. The characterization of DAPP-Sepharose support in terms of dynamic binding capacity was achieved by studying the effect of plasmid DNA concentration and flow rate on pDNA adsorption. The maximum capacity value of 336.75 g pDNA/mL gel was obtained at 1 mL/min with a pDNA concentration of 150 g/mL. Moreover, the values did not vary significantly with the variation of flow rate. In addition, the DAPP-Sepharose showed a high affinity towards pDNA as quantified by the respective dissociation constant (K d = 2.29 ± 0.195 × 10 −7 M). The support was also tested for the purification of two plasmid molecules with different sizes (pVAX1-LacZ and pCAMBIA-1303, with 6.05 kbp and 12.361 kbp, respectively) from clarified Escherichia coli lysate solutions. Total retention of all lysate components was achieved without any added salt to the eluent buffer. The selective elution of impurities and supercoiled pDNA was accomplished simply by the addition of small amounts of salt to the buffer solution. The yield for pCAMBIA-1303 was 65% and for pVAX1-LacZ was 94%, with all host impurity levels in accordance with the requirements established by the regulatory agencies.
Journal of Biochemical and Biophysical Methods, 1999
The preparation of high quality plasmid DNA is a necessary requirement for most molecular biology applications. We compared four different large plasmid preparation protocols, which were based on either a liquid-phase approach (Triton lysis) or purification of alkaline lysis bacterial extracts followed by supercoiled plasmid purification on affinity columns. Two host Escherichia coli strains, JM 109 and INVaF9, were used to grow the test plasmids for comparison of product plasmid DNA produced from the four different plasmid isolation methods. While the DNA grown in E. coli strain JM109, prepared by liquid-phase Triton lysis was appropriately restricted by 12 restriction enzymes, this was not the case for any of the JM109-grown DNA purified by any of the affinity column solid-phase approaches. In contrast to this, when the plasmid DNA was grown in E. coli strain INVaF9, most restriction enzymes cut DNA appropriately, irregardless of the plasmid preparation protocol used. It seems that an impurity commonly eluted with the DNA from all three of the solid-phase DNA columns had an equal effect on the above enzymes using the common host strain JM109, but not strain INVaF9.
Analytical Biochemistry, 2011
Small molecules, like some antibiotics and anticancer agents that bind DNA with high specificity, can represent a relevant alternative as ligands in affinity processes for plasmid DNA (pDNA) purification. In the current study, pDNA binding affinities of berberine, berenil, kanamycin, and neomycin were evaluated by a competitive displacement assay with ethidium bromide using a fluorimetric titration technique. The binding between pDNA and ethidium bromide was tested in different buffer conditions, varying the type and the salt concentration, and was performed in both the absence and presence of the studied compounds. The results showed that the minor groove binder berenil has the higher pDNA binding constant. Chromatographic experiments using a derivatized column with berenil as ligand showed a total retention of pDNA using 1.3 M ammonium sulfate in eluent buffer. A selective separation of supercoiled and open circular isoforms was achieved by further decreasing the salt concentration to 0.6 M and then to 0 M. These results suggest a promising application of berenil as ligand for specific purification of pDNA supercoiled isoform by pseudo-affinity chromatography.
Affinity Chromatography Approaches to Overcome the Challenges of Purifying Plasmid DNA
Trends in biotechnology, 2008
The diversity of biomolecules present in plasmid DNA (pDNA)-containing extracts and the structural and chemical similarities between pDNA and impurities are some of the main challenges of improving or establishing novel purification procedures. In view of the unequalled specificity of affinity purification, this technique has recently begun to be applied in downstream processing of plasmids. This paper discusses the progress and importance of affinity chromatography (AC) for the purification of pDNA-based therapeutic products. Several affinity approaches have already been successfully developed for a variety of applications, and we will focus here on highlighting their possible contributions to the pDNA purification challenge. Diverse affinity applications and their advantages and disadvantages are discussed, as well as the most significant results and improvements in the challenging task of purifying plasmids.
Journal of Chromatography A, 2005
Liquid chromatography plays a central role in process-scale manufacturing of therapeutic plasmid DNA (pDNA) for gene therapy and DNA vaccination. Apart from its use as a preparative purification step, it is also very useful as an analytical tool to monitor and control pDNA quality during processing and in final formulations. This paper gives an overview of the use of pDNA chromatography. The specificity of pDNA purification and the consequent limitations to the performance of chromatography are described. Strategies currently used to overcome those limitations, as well as other possible solutions are presented. Applications of the different types of chromatography to the purification of therapeutic pDNA are reviewed, and the main advantages and disadvantages behind each technique highlighted.
Purification of plasmid (pVaxLacZ) by hydrophobic interaction chromatography
Brazilian Archives of …, 2005
This paper describes a method for the plasmid DNA purification, which includes an ammonium sulphate precipitation, followed by hydrophobic interaction chromatography (HIC) using Phenyl Sepharose 6 Fast Flow (low sub). The use of HIC took advantage of the more hydrophobic character of single stranded nucleic acid impurities as compared with double-stranded plasmid DNA.
Plasmid pVAX1-NH36 purification by membrane and bead perfusion chromatography
Bioprocess and Biosystems Engineering, 2016
The demand for plasmid DNA (pDNA) has increased in response to the rapid advances in vaccines applications to prevent and treat infectious diseases caused by virus, bacteria or parasites, such as Leishmania species. The immunization protocols require large amounts of supercoiled plasmid DNA (sc-pDNA) challenging the development of efficient and profitable processes for capturing and purified pDNA molecules from large volumes of lysates. A typical bioprocess involves four steps: fermentation, primary recovery, intermediate recovery and final purification. Ion-exchange chromatography is one of the key operations in the purification schemes of pDNA owing the chemical structure of these macromolecules. The goal of this research was to compare the performance of the final purification step of pDNA using ion-exchange chromatography on columns packed with Mustang Q membranes or perfusive beads POROS 50 HQ. The experimental results showed that both matrixes could separate the plasmid pVAX1-NH36 (3936 bp) from impurities in clarified Escherichia coli lysates with an adequate resolution. In addition, a 24-and 21-fold global purification factor was obtained. An 88 and 63% plasmid recuperation was achieved with ion-exchange membranes and perfusion beads, respectively. A better understanding of perfusion-based matrices for the purification of pDNA was developed in this research.
Plasmid DNA purification using a multimodal chromatography resin
Journal of Molecular Recognition, 2014
Multimodal chromatography is widely used for isolation of proteins because it often results in improved selectivity compared to conventional separation resins. The binding potential and chromatographic behavior of plasmid DNA have here been examined on a Capto Adhere resin. Capto Adhere is a recent multimodal chromatography material allowing molecular recognition between the ligand and target molecule, which is based on combined ionic and aromatic interactions. Capto Adhere proved to offer a very strong binding of nucleic acids. This property could be used to isolate plasmid DNA from a crude Escherichia coli extract. Using a stepwise NaCl gradient, pure plasmid DNA could be obtained without protein and endotoxin contaminations. The RNA fraction bound most strongly to the resin and could be eluted only at very high salt concentrations (2.0 M NaCl). The chromatographic separation behavior was very robust between pH values 6 and 9, and the dynamic binding capacity was estimated to 60 μg/ml resin.
Microbial Processes and Products. Methods in Biotechnology, 2005
"A bench-scale protocol for the purification of plasmid DNA (pDNA) produced in Escherichia coli is described. The method is specifically designed to prepare pDNA vectors for gene therapy and DNA vaccination applications. The method comprises alkaline lysis, concentration with isopropanol, prepurification by (NH4)2SO4 precipitation and purification by hydrophobic interaction chromatography (HIC), and desalting in gravity-operated 10-mL plastic columns. Analytical techniques used to control the performance of the method and to assess the quality of the pDNA vaccine are also described. Anion-exchange HPLC is used to determine pDNA concentration, whereas the presence of impurities such as RNA, proteins, E. coli genomic DNA, and endotoxins is determined by agarose gel electrophoresis, micro-bicinchoninic acid (BCA), real-time polymerase chain reaction and kinetic-quantitative chromogenic lymulus amoebacyte lysate (QCL LAL) assays, respectively. The method performs very well in terms of yield, purity and biological activity of the final pDNA. Furthermore, it is rapid, very easy to perform, and cost-efficient."