The Fanconi Anemia Pathway Protects Genome Integrity from R-loops (original) (raw)

Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair

Proceedings of The National Academy of Sciences, 2005

Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2͞FANCD1, proteins involved in homologydirected DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca ؊/؊ cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

The role of the Fanconi anemia network in the response to DNA replication stress

Critical Reviews in Biochemistry and Molecular Biology, 2009

Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.

New Advances in the DNA Damage Response Network of Fanconi Anemia and BRCA proteins: FAAP95 Replaces BRCA2 as the True FANCB Protein

Cell Cycle, 2005

Fanconi anemia (FA) proteins function in a DNA damage response pathway that appears to be part of the network including breast cancer susceptibility gene products, BRCA1 and BRCA2. In response to DNA damage or replication signals, a nuclear FA core complex of at least 6 FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG and FANCL) is activated and leads to monoubiquitination of the downstream FA protein, FANCD2. One puzzling question for this pathway is the role of BRCA2. A previous study has proposed that BRCA2 could be identical to two FA proteins: FANCD1, which functions either downstream or in a parallel pathway; and FANCB, which functions upstream of the FANCD2 monoubiquitination. Now, a new study shows that the real FANCB protein is not BRCA2, but a previously uncharacterized component of the FA core complex, FAAP95, suggesting that BRCA2 does not act upstream of the FA pathway. Interestingly, the newly discovered FANCB gene is X-linked and subject to X-inactivation. The presence of a single active copy of FANCB and its essentiality for a functional FA-BRCA pathway make it a potentially vulnerable component of the cellular machinery that maintains genomic integrity.

Review New Advances in the DNA Damage Response Network of Fanconi Anemia and BRCA Proteins

Fanconi anemia (FA) proteins function in a DNA damage response pathway that appears to be part of the network including breast cancer susceptibility gene products, BRCA1 and BRCA2. In response to DNA damage or replication signals, a nuclear FA core complex of at least 6 FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG and FANCL) is activated and leads to monoubiquitination of the downstream FA protein, FANCD2. One puzzling question for this pathway is the role of BRCA2. A previous study has proposed that BRCA2 could be identical to two FA proteins: FANCD1, which functions either downstream or in a parallel pathway; and FANCB, which functions upstream of the FANCD2 monoubiquitination. Now, a new study shows that the real FANCB protein is not BRCA2, but a previously uncharacterized component of the FA core complex, FAAP95, suggesting that BRCA2 does not act upstream of the FA pathway. Interestingly, the newly discovered FANCB gene is X-linked and subject to X-inactivation. The presence of a single active copy of FANCB and its essentiality for a functional FA-BRCA pathway make it a potentially vulnerable component of the cellular machinery that maintains genomic integrity.

How Fanconi anemia proteins promote the four Rs: Replication, recombination, repair, and recovery

Environmental and Molecular Mutagenesis, 2005

The genetically complex disease Fanconi anemia (FA) comprises cancer predisposition, developmental defects, and bone marrow failure due to elevated apoptosis. The FA cellular phenotype includes universal sensitivity to DNA crosslinking damage, symptoms of oxidative stress, and reduced mutability at the X-linked HPRT gene. In this review article, we present a new heuristic molecular model that accommodates these varied features of FA cells. In our view, the FANCA, -C, and -G proteins, which are both cytoplasmic and nuclear, have an integrated dual role in which they sense and convey information about cytoplasmic oxidative stress to the nucleus, where they participate in the further assembly and functionality of the nuclear core complex (NCC FA ¼ FANCA/B/C/E/F/G/L). In turn, NCC FA facilitates DNA replication at sites of base damage and strand breaks by performing the critical monoubiquitination of FANCD2, an event that somehow helps stabilize blocked and broken replication forks. This stabilization facilitates two kinds of processes: translesion synthesis at sites of blocking lesions (e.g., oxidative base damage), which produces point mutations by error-prone polymerases, and homologous recombination-mediated restart of broken forks, which arise spontaneously and when crosslinks are unhooked by the ERCC1-XPF endonuclease. In the absence of the critical FANCD2 monoubiquitination step, broken replication forks further lose chromatid continuity by collapsing into a configuration that is more difficult to restart through recombination and prone to aberrant repair through nonhomologous end joining. Thus, the FA regulatory pathway promotes chromosome integrity by monitoring oxidative stress and coping efficiently with the accompanying oxidative DNA damage during DNA replication. Environ. Mol. Mutagen. 45:128-142, 2005. Published 2005 Wiley-Liss, Inc.

The Fanconi anemia pathway and the DNA interstrand cross-links repair

Biochimie, 2003

Fanconi anemia (FA) is a genetic cancer-predisposition syndrome characterized by bone marrow failure and cellular and chromosomal hypersensitivity to DNA cross-linking agents. Seven FA genes have been isolated and their products associate to form a pathway that interacts functionally or physically with several DNA-damage response proteins involved in cell cycle checkpoints and/or DNA repair. These proteins include BLM, ATM, BRCA1, XPF and the MRE11/RAD50/NBS1 complex. In spite of several recent striking progresses in the biochemistry and the molecular biology of the disorder, the precise function(s) of the FA proteins remain(s) poorly determined. However, several recent data indicate that the FA pathway could be involved in the coordination of both cell cycle checkpoints and DNA repair.

A Role for the Fanconi Anemia C Protein in Maintaining the DNA Damage-induced G2 Checkpoint

Journal of Biological Chemistry, 2004

Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control remains incompletely understood. Here we show that the Fanconi anemia complementation group C protein (Fancc) is necessary for proper function of the DNA damage-induced G 2 /M checkpoint in vitro and in vivo. Despite apparently normal induction of the G 2 /M checkpoint after ionizing radiation, murine and human cells lacking functional FANCC did not maintain the G 2 checkpoint as compared with wild-type cells. The increased rate of mitotic entry seen in Fancc؊/؊ mouse embryo fibroblasts correlated with decreased inhibitory phosphorylation of cdc2 kinase on tyrosine 15. An increased inability to maintain the DNA damage-induced G 2 checkpoint was observed in Fancc ؊/؊;Trp53 ؊/؊ cells compared with Fancc ؊/؊ cells, indicating that Fancc and p53 cooperated to maintain the G 2 checkpoint. In contrast, genetic disruption of both Fancc and Atm did not cooperate in the G 2 checkpoint. These data indicate that Fancc and p53 in separate pathways converge to regulate the G 2 checkpoint. Finally, fibroblasts lacking FANCD2 were found to have a G 2 checkpoint phenotype similar to FANCC-deficient cells, indicating that FANCD2, which is activated by the FA complex, was also required to maintain the G 2 checkpoint. Because a proper checkpoint function is critical for the maintenance of genomic stability and is intricately related to the function and integrity of the DNA repair process, these data have implications in understanding both the function of FA proteins and the mechanism of genomic instability in FA.

Crosstalk between BRCA-Fanconi anemia and mismatch repair pathways prevents MSH2-dependent aberrant DNA damage responses

The EMBO journal, 2014

Several proteins in the BRCA-Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA-FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA-FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is suppressed by depletion of the upstream mismatch recognition factor MSH2. MSH2 depletion suppresses an aberrant DNA damage response, restores cell cycle progression, and promotes ICL resistance through a Rad18-dependent mechanism. MSH2 depletion also suppresses ICL sensitivity in cells deficient for BRCA1 or FANCD2, but not FANCA. Rescue by Msh2 loss wa...

Monoubiquitylation in the Fanconi anemia DNA damage response pathway

DNA Repair, 2009

a b s t r a c t The hereditary genetic disorder Fanconi anemia (FA) belongs to the heterogeneous group of diseases associated with defective DNA damage repair. Recently, several reviews have discussed the FA pathway and its molecular players in the context of genome maintenance and tumor suppression mechanisms [H. Joenje, K.J. Patel, The emerging genetic and molecular basis of Fanconi anaemia, Nat. Rev. Genet. 2 (2001) 446-457; W. Wang, Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins, Nat. Rev. Genet. 8 (2007) 735-748; L.J. Niedernhofer, A.S. Lalai, J.H. Hoeijmakers, Fanconi anemia (cross)linked to DNA repair, Cell 123 (2005) 1191-1198; K.J. Patel, Fanconi anemia and breast cancer susceptibility, Nat. Genet. 39 ]. This review assesses the influence of posttranslational modification by ubiquitin. We review and extract the key features of the enzymatic cascade required for the monoubiquitylation of the FANCD2/FANCI complex and attempt to include recent findings into a coherent mechanism. As this part of the FA pathway is still far from fully understood, we raise several points that must be addressed in future studies.

The Fanconi Anemia/BRCA pathway: new faces in the crowd

Genes & Development, 2005

Over the past few years, study of the rare inherited chromosome instability disorder, Fanconi Anemia (FA), has uncovered a novel DNA damage response pathway. Through the cooperation of multiple proteins, this pathway regulates a complicated cellular response to DNA cross-linking agents and other genotoxic stresses. In this article we review recent data identifying new components of the FA pathway that implicate it in several aspects of the DNA damage response, including the direct processing of DNA, translesion synthesis, homologous recombination, and cell cycle regulation. We also discuss new findings that explain how the FA pathway is regulated through the processes of ubiquitination and deubiquitination. We then consider the clinical implications of our current understanding of the FA pathway, particularly in the development and treatment of malignancy in heterozygous carriers of FA mutations or in patients with sporadic cancers. We consider how recent studies of p53-mediated apoptosis and loss of p53 function in models of FA may help explain the clinical features of the disease and finally present a hypothesis to account for the specificity of the FA pathway in the response to DNA cross-links.