Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated condensates with α-actinin (original) (raw)

Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes

PLoS Genetics, 2010

The stereotyped striation of myofibrils is a conserved feature of muscle organization that is critical to its function. Although most components that constitute the basic myofibrils are well-characterized biochemically and are conserved across the animal kingdom, the mechanisms leading to the precise assembly of sarcomeres, the basic units of myofibrils, are poorly understood. To gain insights into this process, we investigated the functional relationships of sarcomeric protein complexes. Specifically, we systematically analyzed, using either RNAi in primary muscle cells or available genetic mutations, the organization of myofibrils in Drosophila muscles that lack one or more sarcomeric proteins. Our study reveals that the thin and thick filaments are mutually dependent on each other for striation. Further, the tension sensor complex comprised of zipper/Zasp/a-actinin is involved in stabilizing the sarcomere but not in its initial formation. Finally, integrins appear essential for the interdigitation of thin and thick filaments that occurs prior to striation. Thus, sarcomere formation occurs by the coordinated assembly of multiple latent protein complexes, as opposed to sequential assembly.

Structural Insights into F-actin Regulation and Sarcomere Assembly via Myotilin

Biophysical Journal, 2020

Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. We used a combination of small angle X-ray scattering, cross-linking mass spectrometry, biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin's structural role in Z-discs. Significance Statement Sarcomeres are the primary structural and functional unit of striated muscles, conferring movement in all animals. The Z-disk is the boundary between adjacent sarcomeres, where actin filaments (Factin) are anchored. Z-disc protein myotilin, is a scaffold protein, which provides structural integrity to the Z-disc by multiple interactions to its central components, including F-actin and α-actinin-2. Here we provide the structure of myotilin, revealing its structural plasticity in solution and the first integrative structural model of its complex with F-actin. We further show that myotilin displaces tropomyosin from F-actin, implying a novel role of myotilin in sarcomere biogenesis beyond being an interaction hub for Z-disk partners.

From A to Z and back? Multicompartment proteins in the sarcomere

Trends in Cell Biology, 2006

Sarcomeres, the smallest contractile units of striated muscle, are conventionally perceived as the most regular macromolecular assemblies in biology, with precisely assigned localizations for their constituent proteins. However, recent studies have revealed complex multiple locations for several sarcomere proteins within the sarcomere and other cellular compartments such as the nucleus. Several of these proteins appear to relocalize in response to mechanical stimuli. Here, we review the emerging role of these protein networks as dynamic information switchboards that communicate between the contractile machinery and the nucleus to central pathways controlling cell survival, protein breakdown, gene expression and extracellular signaling.

Molecular structure of the sarcomere

Craig, R. & Padrón, R. “Molecular Structure of the Sarcomere. Chapter 7. pages.129-166. Textbook “Myology” (Editors A. G. Engel & C. Franzini-Armstrong), Third edition. McGraw-Hill, Inc., New York. 2004. , 2004

Heterogeneity of Z-band structure within a single muscle sarcomere: implications for sarcomere assembly

Journal of molecular …, 2003

The vertebrate striated muscle Z-band connects actin filaments of opposite polarity from adjacent sarcomeres and allows tension to be transmitted along a myofibril during contraction. Z-bands in different muscles have a modular structure formed by layers of a-actinin molecules cross-linking actin filaments. Successive layers occur at 19 nm intervals and have 908 rotations between them. 3D reconstruction from electron micrographs show a two-layer "simple" Z-band in fish body fast muscle, a three-layer Z-band in fish fin fast muscle, and a six-layer Z-band in mammalian slow muscle. Related to the number of these layers, longitudinal sections of the Z-band show a number of zigzag connections between the oppositely oriented actin filaments. The number of layers also determines the axial width of the Z-band, which is a useful indicator of fibre type; fast fibres have narrow (, 30-50 nm) Z-bands; slow and cardiac fibres have wide (, 100 -140 nm) Z-bands. Here, we report the first observation of two different Z-band widths within a single sarcomere. By comparison with previous studies, the narrower Z-band comprises three layers. Since the increase in width of the wider Z-band is about 19 nm, we conclude that it comprises four layers. This finding is consistent with a Z-band assembly model involving molecular control mechanisms that can add additional layers of 19 nm periodicity. These multiple Z-band structures suggest that different isoforms of nebulin and titin with a variable number of Z-repeats could be present within a single sarcomere.

Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of a-actinin

1998

The sarcomeric Z-disk, the anchoring plane of thin (actin) filaments, links titin (also called connectin) and actin filaments from opposing sarcomere halves in a lattice connected by α-actinin. We demonstrate by protein interaction analysis that two types of titin interactions are involved in the assembly of α-actinin into the Z-disk. Titin interacts via a single binding site with the two central spectrin-like repeats of the outermost pair of α-actinin molecules. In the central Z-disk, titin can interact with multiple α-actinin molecules via their C-terminal domains. These interactions allow the assembly of a ternary complex of titin, actin and α-actinin in vitro, and are expected to constrain the path of titin in the Z-disk. In thick skeletal muscle Z-disks, titin filaments cross over the Z-disk centre bỹ 30 nm, suggesting that their α-actinin-binding sites overlap in an antiparallel fashion. The combination of our biochemical and ultrastructural data now allows a molecular model of the sarcomeric Z-disk, where overlapping titin filaments and their interactions with the α-actinin rod and C-terminal domain can account for the essential ultrastructural features.

Sarcomeric Pattern Formation by Actin Cluster Coalescence

PLoS Computational Biology, 2012

Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.

The Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins

Journal of Cell Science, 2005

Myotilin and the calsarcin family member FATZ-1 (also called calsarcin-2 or myozenin-1) are recently discovered sarcomeric proteins implicated in the assembly and stabilization of the Z-discs in skeletal muscle. The essential role of myotilin in skeletal muscle is attested by the observation that certain forms of myofibrillar myopathy and limb girdle muscular dystrophy are caused by mutations in the human myotilin gene. Here we show by transfection, biochemical and/or yeast two-hybrid assay that: (1) myotilin is able to interact with the C-terminal region of FATZ-1 and that the N- or C-terminal truncations of myotilin abrogate binding; (2) myotilin can also interact with another calsarcin member, FATZ-2 (calsarcin-1, myozenin-2); (3) myotilin and FATZ-1 bind not only to the C-terminal region of filamin-C containing the Ig repeats 19-24, but also to the other two filamins, filamin-A and filamin-B, as well as the newly identified filamin-Bvar-1variant; (4) the binding of myotilin to f...