Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated condensates with α-actinin (original) (raw)

Abstract

Sarcomeric proteins FATZ-1 and α-actinin-2 associate in a tight fuzzy complex, which forms phase-separated condensates.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (156)

  1. D. Frank, C. Kuhn, H. A. Katus, N. Frey, The sarcomeric Z-disc: A nodal point in signalling and disease. J. Mol. Med. 84, 446-468 (2006).
  2. P. M. Hwang, B. D. Sykes, Targeting the sarcomere to correct muscle function. Nat. Rev. Drug Discov. 14, 313-328 (2015).
  3. M. Gautel, K. Djinović-Carugo, The sarcomeric cytoskeleton: From molecules to motion. J. Exp. Biol. 219, 135-145 (2016).
  4. P. K. Luther, The vertebrate muscle Z-disc: Sarcomere anchor for structure and signalling. J. Muscle Res. Cell Motil. 30, 171-185 (2009).
  5. G. A. Dabiri, K. K. Turnacioglu, J. M. Sanger, J. W. Sanger, Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A. 94, 9493-9498 (1997).
  6. E. Ehler, M. Gautel, The sarcomere and sarcomerogenesis. Adv. Exp. Med. Biol. 642, 1-14 (2008).
  7. J. W. Sanger, J. Wang, Y. Fan, J. White, L. Mi-Mi, D. K. Dube, J. M. Sanger, D. Pruyne, Assembly and maintenance of myofibrils in striated muscle. Handb. Exp. Pharmacol. 235, 39-75 (2017).
  8. A. L. Stout, J. Wang, J. M. Sanger, J. W. Sanger, Tracking changes in Z-band organization during myofibrillogenesis with FRET imaging. Cell Motil. Cytoskeleton 65, 353-367 (2008).
  9. J. Wang, N. Shaner, B. Mittal, Q. Zhou, J. Chen, J. M. Sanger, J. W. Sanger, Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil. Cytoskeleton 61, 34-48 (2005).
  10. T. Masaki, M. Endo, S. Ebashi, Localization of 6S component of -actinin at Z-band. J. Biochem. 62, 630-632 (1967).
  11. B. Sjöblom, A. Salmazo, K. Djinović-Carugo, -Actinin structure and regulation. Cell. Mol. Life Sci. 65, 2688-2701 (2008).
  12. E. de Almeida Ribeiro Jr., N. Pinotsis, A. Ghisleni, A. Salmazo, P. V. Konarev, J. Kostan, B. Sjöblom, C. Schreiner, A. A. Polyansky, E. A. Gkougkoulia, M. R. Holt, F. L. Aachmann, B. Žagrović, E. Bordignon, K. F. Pirker, D. I. Svergun, M. Gautel, K. Djinović-Carugo, The structure and regulation of human muscle -actinin. Cell 159, 1447-1460 (2014).
  13. J. Ylänne, K. Scheffzek, P. Young, M. Saraste, Crystal structure of the -actinin rod reveals an extensive torsional twist. Structure 9, 597-604 (2001).
  14. G. Faulkner, A. Pallavicini, A. Comelli, M. Salamon, G. Bortoletto, C. Ievolella, S. Trevisan, S. Kojić, F. Dalla Vecchia, P. Laveder, G. Valle, G. Lanfranchi, FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle. J. Biol. Chem. 275, 41234-41242 (2000).
  15. F. Takada, D. L. Vander Woude, H. Q. Tong, T. G. Thompson, S. C. Watkins, L. M. Kunkel, A. H. Beggs, Myozenin: An -actinin-and -filamin-binding protein of skeletal muscle Z lines. Proc. Natl. Acad. Sci. U.S.A. 98, 1595-1600 (2001).
  16. N. Frey, E. N. Olson, Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J. Biol. Chem. 277, 13998-14004 (2002).
  17. N. Frey, J. A. Richardson, E. N. Olson, Calsarcins, a novel family of sarcomeric calcineurin- binding proteins. Proc. Natl. Acad. Sci. U.S.A. 97, 14632-14637 (2000).
  18. Y. Gontier, A. Taivainen, L. Fontao, A. Sonnenberg, A. van der Flier, O. Carpen, G. Faulkner, L. Borradori, The Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins. J. Cell Sci. 118, 3739-3749 (2005).
  19. P. von Nandelstadh, M. Ismail, C. Gardin, H. Suila, I. Zara, A. Belgrano, G. Valle, O. Carpen, G. Faulkner, A class III PDZ binding motif in the myotilin and FATZ families binds enigma family proteins: A common link for Z-disc myopathies. Mol. Cell. Biol. 29, 822-834 (2009).
  20. N. Frey, D. Frank, S. Lippl, C. Kuhn, H. Kögler, T. Barrientos, C. Rohr, R. Will, O. J. Müller, H. Weiler, R. Bassel-Duby, H. A. Katus, E. N. Olson, Calsarcin-2 deficiency increases exercise capacity in mice through calcineurin/NFAT activation. J. Clin. Invest. 118, 3598-3608 (2008).
  21. J. T. Seto, K. G. R. Quinlan, M. Lek, X. F. Zheng, F. Garton, D. G. MacArthur, M. W. Hogarth, P. J. Houweling, P. Gregorevic, N. Turner, G. J. Cooney, N. Yang, K. N. North, ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J. Clin. Invest. 123, 4255-4263 (2013).
  22. A. Osio, L. Tan, S. N. Chen, R. Lombardi, S. F. Nagueh, S. Shete, R. Roberts, J. T. Willerson, A. J. Marian, Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ. Res. 100, 766-768 (2007).
  23. A. Ruggiero, S. N. Chen, R. Lombardi, G. Rodriguez, A. J. Marian, Pathogenesis of hypertrophic cardiomyopathy caused by myozenin 2 mutations is independent of calcineurin activity. Cardiovasc. Res. 97, 44-54 (2013).
  24. A. M. Arola, X. Sanchez, R. T. Murphy, E. Hasle, H. Li, P. M. Elliott, W. J. McKenna, J. A. Towbin, N. E. Bowles, Mutations in PDLIM3 and MYOZ1 encoding myocyte Z line proteins are infrequently found in idiopathic dilated cardiomyopathy. Mol. Genet. Metab. 90, 435-440 (2007).
  25. M. G. Posch, A. Perrot, R. Dietz, C. Ozcelik, S. Pankuweit, V. Ruppert, A. Richter, B. Maisch, Mutations in MYOZ1 as well as MYOZ2 encoding the calsarcins are not associated with idiopathic and familial dilated cardiomyopathy. Mol. Genet. Metab. 91, 207-208 (2007).
  26. M. G. Posch, L. Thiemann, P. Tomasov, J. Veselka, N. Cardim, M. Garcia-Castro, E. Coto, A. Perrot, C. Geier, R. Dietz, W. Haverkamp, C. Ozcelik, Sequence analysis of myozenin 2 in 438 European patients with familial hypertrophic cardiomyopathy. Med. Sci. Monit. 14, CR372-CR374 (2008).
  27. D. Frank, C. Kuhn, M. van Eickels, D. Gehring, C. Hanselmann, S. Lippl, R. Will, H. A. Katus, N. Frey, Calsarcin-1 protects against angiotensin-II induced cardiac hypertrophy. Circulation 116, 2587-2596 (2007).
  28. N. Frey, T. Barrientos, J. M. Shelton, D. Frank, H. Rütten, D. Gehring, C. Kuhn, M. Lutz, B. Rothermel, R. Bassel-Duby, J. A. Richardson, H. A. Katus, J. A. Hill, E. N. Olson, Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat. Med. 10, 1336-1343 (2004).
  29. Y. Yoshimoto, M. Ikemoto-Uezumi, K. Hitachi, S.-I. Fukada, A. Uezumi, Methods for accurate assessment of myofiber maturity during skeletal muscle regeneration. Front. Cell Dev. Biol. 8, 267 (2020).
  30. T. Cornvik, S.-L. Dahlroth, A. Magnusdottir, S. Flodin, B. Engvall, V. Lieu, M. Ekberg, P. Nordlund, An efficient and generic strategy for producing soluble human proteins and domains in E. coli by screening construct libraries. Proteins 65, 266-273 (2006).
  31. S. Brocca, L. Testa, F. Sobott, M. Samalikova, A. Natalello, E. Papaleo, M. Lotti, L. De Gioia, S. M. Doglia, L. Alberghina, R. Grandori, Compaction properties of an intrinsically disordered protein: Sic1 and its kinase-inhibitor domain. Biophys. J. 100, 2243-2252 (2011).
  32. V. N. Uversky, Protein intrinsic disorder and structure-function continuum. Prog. Mol. Biol. Transl. Sci. 166, 1-17 (2019).
  33. M. Nygaard, B. B. Kragelund, E. Papaleo, K. Lindorff-Larsen, An efficient method for estimating the hydrodynamic radius of disordered protein conformations. Biophys. J. 113, 550-557 (2017).
  34. G. Qi, R. Lee, S. Hayward, A comprehensive and non-redundant database of protein domain movements. Bioinformatics 21, 2832-2838 (2005).
  35. N. Pinotsis, K. Zielinska, M. Babuta, J. L. Arolas, J. Kostan, M. B. Khan, C. Schreiner, A. Salmazo, L. Ciccarelli, M. Puchinger, E. A. Gkougkoulia, E. de Almeida Ribeiro Jr., T. C. Marlovits, A. Bhattacharya, K. Djinovic-Carugo, Calcium modulates the domain flexibility and function of an -actinin similar to the ancestral -actinin. Proc. Natl. Acad. Sci. U.S.A. 117, 22101-22112 (2020).
  36. N. E. Davey, K. Van Roey, R. J. Weatheritt, G. Toedt, B. Uyar, B. Altenberg, A. Budd, F. Diella, H. Dinkel, T. J. Gibson, Attributes of short linear motifs. Mol. Biosyst. 8, 268-281 (2012).
  37. M. Kumar, M. Gouw, S. Michael, H. Sámano-Sánchez, R. Pancsa, J. Glavina, A. Diakogianni, J. A. Valverde, D. Bukirova, J. Čalyševa, N. Palopoli, N. E. Davey, L. B. Chemes, T. J. Gibson, ELM-the eukaryotic linear motif resource in 2020. Nucleic Acids Res. 48, D296-D306 (2020).
  38. E. Krissinel, K. Henrick, Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774-797 (2007).
  39. W. Borcherds, A. Becker, L. Chen, J. Chen, L. B. Chemes, G. W. Daughdrill, Optimal affinity enhancement by a conserved flexible linker controls p53 mimicry in MdmX. Biophys. J. 112, 2038-2042 (2017).
  40. H.-X. Zhou, Loops in proteins can be modeled as worm-like chains. J. Phys. Chem. B 105, 6763-6766 (2001).
  41. C. J. Oldfield, Y. Cheng, M. S. Cortese, P. Romero, V. N. Uversky, A. K. Dunker, Coupled folding and binding with -helix-forming molecular recognition elements. Biochemistry 44, 12454-12470 (2005).
  42. C. Bignon, F. Troilo, S. Gianni, S. Longhi, Partner-mediated polymorphism of an intrinsically disordered protein. J. Mol. Biol. 430, 2493-2507 (2018).
  43. P. Bernadó, E. Mylonas, M. V. Petoukhov, M. Blackledge, D. I. Svergun, Structural characterization of flexible proteins using small-angle x-ray scattering. J. Am. Chem. Soc. 129, 5656-5664 (2007).
  44. G. Tria, H. D. T. Mertens, M. Kachala, D. I. Svergun, Advanced ensemble modelling of flexible macromolecules using x-ray solution scattering. IUCrJ 2, 207-217 (2015).
  45. R. Sharma, Z. Raduly, M. Miskei, M. Fuxreiter, Fuzzy complexes: Specific binding without complete folding. FEBS Lett. 589, 2533-2542 (2015).
  46. P. Tompa, M. Fuxreiter, Fuzzy complexes: Polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33, 2-8 (2008).
  47. T. Oda, H. Yanagisawa, Cryo-electron tomography of cardiac myofibrils reveals a 3D lattice spring within the Z-discs. Commun. Biol. 3, 585 (2020).
  48. A. D. Gonçalves, C. Alexander, C. J. Roberts, S. G. Spain, S. Uddin, S. Allen, The effect of protein concentration on the viscosity of a recombinant albumin solution formulation. RSC Adv. 6, 15143-15154 (2016).
  49. Y. Shin, C. P. Brangwynne, Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
  50. S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285-298 (2017).
  51. R. M. Vernon, J. D. Forman-Kay, First-generation predictors of biological protein phase separation. Curr. Opin. Struct. Biol. 58, 88-96 (2019).
  52. J. R. Gillespie, D. Shortle, Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. J. Mol. Biol. 268, 158-169 (1997).
  53. Y. Xue, I. S. Podkorytov, D. K. Rao, N. Benjamin, H. Sun, N. R. Skrynnikov, Paramagnetic relaxation enhancements in unfolded proteins: Theory and application to drkN SH3 domain. Protein Sci. 18, 1401-1424 (2009).
  54. A. A. M. André, E. Spruijt, Liquid-liquid phase separation in crowded environments. Int. J. Mol. Sci. 21, 5908 (2020).
  55. M. T. Tyn, T. W. Gusek, Prediction of diffusion coefficients of proteins. Biotechnol. Bioeng. 35, 327-338 (1990).
  56. Y. Lin, D. S. W. Protter, M. K. Rosen, R. Parker, Formation and maturation of phase- separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208-219 (2015).
  57. S. Jain, J. R. Wheeler, R. W. Walters, A. Agrawal, A. Barsic, R. Parker, ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487-498 (2016).
  58. R. M. Vernon, P. A. Chong, B. Tsang, T. H. Kim, A. Bah, P. Farber, H. Lin, J. D. Forman-Kay, Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife 7, e31486 (2018).
  59. P. Young, C. Ferguson, S. Bañuelos, M. Gautel, Molecular structure of the sarcomeric Z-disk: Two types of titin interactions lead to an asymmetrical sorting of -actinin. EMBO J. 17, 1614-1624 (1998).
  60. R. Hastings, C. P. de Villiers, C. Hooper, L. Ormondroyd, A. Pagnamenta, S. Lise, S. Salatino, S. J. L. Knight, J. C. Taylor, K. L. Thomson, L. Arnold, S. D. Chatziefthimiou, P. V. Konarev, M. Wilmanns, E. Ehler, A. Ghisleni, M. Gautel, E. Blair, H. Watkins, K. Gehmlich, Combination of whole genome sequencing, linkage, and functional studies implicates a missense mutation in titin as a cause of autosomal dominant cardiomyopathy with features of left ventricular noncompaction. Circ. Cardiovasc. Genet. 9, 426-435 (2016).
  61. R. A. Atkinson, C. Joseph, G. Kelly, F. W. Muskett, T. A. Frenkiel, D. Nietlispach, A. Pastore, Ca 2+ -independent binding of an EF-hand domain to a novel motif in the -actinin-titin complex. Nat. Struct. Biol. 8, 853-857 (2001).
  62. Y. Au, R. A. Atkinson, R. Guerrini, G. Kelly, C. Joseph, S. R. Martin, F. W. Muskett, A. Pallavicini, G. Faulkner, A. Pastore, Solution structure of ZASP PDZ domain: Implications for sarcomere ultrastructure and enigma family redundancy. Structure 12, 611-622 (2004).
  63. M. R. Beck, C. A. Otey, S. L. Campbell, Structural characterization of the interactions between palladin and -actinin. J. Mol. Biol. 413, 712-725 (2011).
  64. J. Kostan, M. Pavšič, V. Puž, T. C. Schwarz, F. Drepper, S. Molt, M. A. Graewert, C. Schreiner, S. Sajko, P. F. M. van der Ven, D. I. Svergun, B. Warscheid, R. Konrat, D. O. Fürst, B. Lenarčič, K. Djinović-Carugo, Molecular basis of F-actin regulation and sarcomere assembly via myotilin. PLOS Biol. 19, e3001148 (2021).
  65. R. J. Chi, A. R. Simon, E. A. Bienkiewicz, A. Felix, T. C. S. Keller III, Smooth muscle titin Zq domain interaction with the smooth muscle -actinin central rod. J. Biol. Chem. 283, 20959-20967 (2008).
  66. C. L. Gustafson, N. C. Parsley, H. Asimgil, H.-W. Lee, C. Ahlbach, A. K. Michael, H. Xu, O. L. Williams, T. L. Davis, A. C. Liu, C. L. Partch, A slow conformational switch in the BMAL1 transactivation domain modulates circadian rhythms. Mol. Cell 66, 447-457.e7 (2017).
  67. P. Zou, N. Pinotsis, S. Lange, Y.-H. Song, A. Popov, I. Mavridis, O. M. Mayans, M. Gautel, M. Wilmanns, Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature 439, 229-233 (2006).
  68. J. Golji, R. Collins, M. R. K. Mofrad, Molecular mechanics of the -actinin rod domain: Bending, torsional, and extensional behavior. PLOS Comput. Biol. 5, e1000389 (2009).
  69. T. Burgoyne, J. M. Heumann, E. P. Morris, C. Knupp, J. Liu, M. K. Reedy, K. A. Taylor, K. Wang, P. K. Luther, Three-dimensional structure of the basketweave Z-band in midshipman fish sonic muscle. Proc. Natl. Acad. Sci. U.S.A. 116, 15534-15539 (2019).
  70. K. A. Dill, D. O. V. Alonso, K. Hutchinson, Thermal stabilities of globular proteins. Biochemistry 28, 5439-5449 (1989).
  71. Y.-H. Lin, J. D. Forman-Kay, H. S. Chan, Theories for sequence-dependent phase behaviors of biomolecular condensates. Biochemistry 57, 2499-2508 (2018).
  72. F. G. Quiroz, A. Chilkoti, Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164-1171 (2015).
  73. S. Boeynaems, S. Alberti, N. L. Fawzi, T. Mittag, M. Polymenidou, F. Rousseau, J. Schymkowitz, J. Shorter, B. Wolozin, L. Van Den Bosch, P. Tompa, M. Fuxreiter, Protein phase separation: A new phase in cell biology. Trends Cell Biol. 28, 420-435 (2018).
  74. J. D. Forman-Kay, R. W. Kriwacki, G. Seydoux, Phase separation in biology and disease. J. Mol. Biol. 430, 4603-4606 (2018).
  75. P. Li, S. Banjade, H.-C. Cheng, S. Kim, B. Chen, L. Guo, M. Llaguno, J. V. Hollingsworth, D. S. King, S. F. Banani, P. S. Russo, Q.-X. Jiang, B. T. Nixon, M. K. Rosen, Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336-340 (2012).
  76. R. M. Robson, D. E. Goll, N. Arakawa, M. H. Stromer, Purification and properties of -actinin from rabbit skeletal muscle. Biochim. Biophys. Acta 200, 296-318 (1970).
  77. K. L. Weirich, S. Banerjee, K. Dasbiswas, T. A. Witten, S. Vaikuntanathan, M. L. Gardel, Liquid behavior of cross-linked actin bundles. Proc. Natl. Acad. Sci. U.S.A. 114, 2131-2136 (2017).
  78. S. He, H.-T. Chou, D. Matthies, T. Wunder, M. T. Meyer, N. Atkinson, A. Martinez-Sanchez, P. D. Jeffrey, S. A. Port, W. Patena, G. He, V. K. Chen, F. M. Hughson, A. J. McCormick, O. Mueller-Cajar, B. D. Engel, Z. Yu, M. C. Jonikas, The structural basis of Rubisco phase separation in the pyrenoid. Nat. Plants 6, 1480-1490 (2020).
  79. G. Mlynek, A. Lehner, J. Neuhold, S. Leeb, J. Kostan, A. Charnagalov, P. Stolt-Bergner, K. Djinović-Carugo, N. Pinotsis, The Center for Optimized Structural Studies (COSS) platform for automation in cloning, expression, and purification of single proteins and protein-protein complexes. Amino Acids 46, 1565-1582 (2014).
  80. L. Whitmore, B. A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 89, 392-400 (2008).
  81. N. Sreerama, R. W. Woody, Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252-260 (2000).
  82. M. Cristodero, J. Mani, S. Oeljeklaus, L. Aeberhard, H. Hashimi, D. J. F. Ramrath, J. Lukeš, B. Warscheid, A. Schneider, Mitochondrial translation factors of Trypanosoma brucei: Elongation factor-Tu has a unique subdomain that is essential for its function. Mol. Microbiol. 90, 744-755 (2013).
  83. M. C. Chambers, B. Maclean, R. Burke, D. Amodei, D. L. Ruderman, S. Neumann, L. Gatto, B. Fischer, B. Pratt, J. Egertson, K. Hoff, D. Kessner, N. Tasman, N. Shulman, B. Frewen, T. A. Baker, M.-Y. Brusniak, C. Paulse, D. Creasy, L. Flashner, K. Kani, C. Moulding, S. L. Seymour, L. M. Nuwaysir, B. Lefebvre, F. Kuhlmann, J. Roark, P. Rainer, S. Detlev, T. Hemenway, A. Huhmer, J. Langridge, B. Connolly, T. Chadick, K. Holly, J. Eckels, E. W. Deutsch, R. L. Moritz, J. E. Katz, D. B. Agus, M. MacCoss, D. L. Tabb, P. Mallick, A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918-920 (2012).
  84. A. Leitner, T. Walzthoeni, R. Aebersold, Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/ xProphet software pipeline. Nat. Protoc. 9, 120-137 (2014).
  85. C. W. Combe, L. Fischer, J. Rappsilber, xiNET: Cross-link network maps with residue resolution. Mol. Cell. Proteomics 14, 1137-1147 (2015).
  86. S. Alberti, S. Saha, J. B. Woodruff, T. M. Franzmann, J. Wang, A. A. Hyman, A user's guide for phase separation assays with purified proteins. J. Mol. Biol. 430, 4806-4820 (2018).
  87. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675 (2012).
  88. C. S. Theile, M. D. Witte, A. E. M. Blom, L. Kundrat, H. L. Ploegh, C. P. Guimaraes, Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1800-1807 (2013).
  89. K. Kazimierczuk, A. Zawadzka-Kazimierczuk, W. Koźmiński, Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J. Magn. Reson. 205, 286-292 (2010).
  90. A. Zawadzka-Kazimierczuk, W. Koźmiński, H. Šanderová, L. Krásný, High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins. J. Biomol. NMR 52, 329-337 (2012).
  91. S. Żerko, P. Byrski, P. Włodarczyk-Pruszyński, M. Górka, K. Ledolter, E. Masliah, R. Konrat, W. Koźmiński, Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: Application to Tau3x protein. J. Biomol. NMR 65, 193-203 (2016).
  92. K. Kazimierczuk, A. Zawadzka, W. Koźmiński, I. Zhukov, Random sampling of evolution time space and Fourier transform processing. J. Biomol. NMR 36, 157-168 (2006).
  93. J. Stanek, W. Koźmiński, Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. J. Biomol. NMR 47, 65-77 (2010).
  94. K. Kazimierczuk, A. Zawadzka, W. Koźmiński, Narrow peaks and high dimensionalities: Exploiting the advantages of random sampling. J. Magn. Reson. 197, 219-228 (2009).
  95. K. Kazimierczuk, A. Zawadzka, W. Koźmiński, I. Zhukov, Lineshapes and artifacts in multidimensional Fourier transform of arbitrary sampled NMR data sets. J. Magn. Reson. 188, 344-356 (2007).
  96. W. Lee, M. Tonelli, J. L. Markley, NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325-1327 (2015).
  97. A. Zawadzka-Kazimierczuk, W. Koźmiński, M. Billeter, TSAR: A program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra. J. Biomol. NMR 54, 81-95 (2012).
  98. J. Schleucher, M. Schwendinger, M. Sattler, P. Schmidt, O. Schedletzky, S. J. Glaser, O. W. Sørensen, C. Griesinger, A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J. Biomol. NMR 4, 301-306 (1994).
  99. J. Iwahara, C. Tang, G. Marius Clore, Practical aspects of 1 H transverse paramagnetic relaxation enhancement measurements on macromolecules. J. Magn. Reson. 184, 185-195 (2007).
  100. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, A. Bax, NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293 (1995).
  101. C. E. Blanchet, A. Spilotros, F. Schwemmer, M. A. Graewert, A. Kikhney, C. M. Jeffries, D. Franke, D. Mark, R. Zengerle, F. Cipriani, S. Fiedler, M. Roessle, D. I. Svergun, Versatile sample environments and automation for biological solution x-ray scattering experiments at the P12 beamline (PETRA III, DESY). J. Appl. Cryst. 48, 431-443 (2015). Downloaded from https://www.science.org on November 29, 2021
  102. P. Pernot, A. Round, R. Barrett, A. De Maria Antolinos, A. Gobbo, E. Gordon, J. Huet, J. Kieffer, M. Lentini, M. Mattenet, C. Morawe, C. Mueller-Dieckmann, S. Ohlsson, W. Schmid, J. Surr, P. Theveneau, L. Zerrad, S. McSweeney, Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution. J. Synchrotron Radiat. 20, 660-664 (2013).
  103. A. Panjkovich, D. I. Svergun, CHROMIXS: Automatic and interactive analysis of chromatography-coupled small-angle x-ray scattering data. Bioinformatics 34, 1944-1946 (2018).
  104. D. Franke, M. V. Petoukhov, P. V. Konarev, A. Panjkovich, A. Tuukkanen, H. D. T. Mertens, A. G. Kikhney, N. R. Hajizadeh, J. M. Franklin, C. M. Jeffries, D. I. Svergun, ATSAS 2.8: A comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Cryst. 50, 1212-1225 (2017).
  105. V. Receveur-Brechot, D. Durand, How random are intrinsically disordered proteins? A small angle scattering perspective. Curr. Protein Pept. Sci. 13, 55-75 (2012).
  106. D. Svergun, C. Barberato, M. H. J. Koch, CRYSOL -A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768-773 (1995).
  107. M. V. Petoukhov, D. Franke, A. V. Shkumatov, G. Tria, A. G. Kikhney, M. Gajda, C. Gorba, H. D. Mertens, P. V. Konarev, D. I. Svergun, New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Cryst. 45, 342-350 (2012).
  108. A. G. Kikhney, C. R. Borges, D. S. Molodenskiy, C. M. Jeffries, D. I. Svergun, SASBDB: Towards an automatically curated and validated repository for biological scattering data. Protein Sci. 29, 66-75 (2020).
  109. W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr. 66 (Pt 2), 125-132 (2010). W. Kabsch, Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133-144 (2010).
  110. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, Phaser crystallographic software. J. Appl. Cryst. 40, 658-674 (2007).
  111. D. Liebschner, P. V. Afonine, M. L. Baker, G. Bunkoczi, V. B. Chen, T. I. Croll, B. Hintze, L. W. Hung, S. Jain, A. J. McCoy, N. W. Moriarty, R. D. Oeffner, B. K. Poon, M. G. Prisant, R. J. Read, J. S. Richardson, D. C. Richardson, M. D. Sammito, O. V. Sobolev, D. H. Stockwell, T. C. Terwilliger, A. G. Urzhumtsev, L. L. Videau, C. J. Williams, P. D. Adams, Macromolecular structure determination using x-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861-877 (2019).
  112. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501 (2010).
  113. O. S. Smart, T. O. Womack, C. Flensburg, P. Keller, W. Paciorek, A. Sharff, C. Vonrhein, G. Bricogne, Exploiting structure similarity in refinement: Automated NCS and target- structure restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68, 368-380 (2012).
  114. J. Maupetit, R. Gautier, P. Tuffery, SABBAC: Online structural alphabet-based protein backbone reconstruction from alpha-carbon trace. Nucleic Acids Res. 34, W147-W151 (2006).
  115. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19-25 (2015).
  116. K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, D. E. Shaw, Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78, 1950-1958 (2010).
  117. S. Piana, A. G. Donchev, P. Robustelli, D. E. Shaw, Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B 119, 5113-5123 (2015).
  118. W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695-1697 (1985).
  119. M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182-7190 (1981).
  120. B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463-1472 (1997).
  121. F. Corpet, Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881-10890 (1988).
  122. X. Robert, P. Gouet, Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320-W324 (2014).
  123. D. Piovesan, F. Tabaro, L. Paladin, M. Necci, I. Micetic, C. Camilloni, N. Davey, Z. Dosztanyi, B. Meszaros, A. M. Monzon, G. Parisi, E. Schad, P. Sormanni, P. Tompa, M. Vendruscolo, W. F. Vranken, S. C. E. Tosatto, MobiDB 3.0: More annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res. 46, D471-D476 (2018).
  124. M. J. Mizianty, Z. Peng, L. Kurgan, MFDp2: Accurate predictor of disorder in proteins by fusion of disorder probabilities, content and profiles. Intrinsically Disord. Proteins 1, e24428 (2013).
  125. J. J. Ward, J. S. Sodhi, L. J. McGuffin, B. F. Buxton, D. T. Jones, Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635-645 (2004).
  126. B. Meszaros, G. Erdos, Z. Dosztanyi, IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46, W329-W337 (2018).
  127. D. Piovesan, I. Walsh, G. Minervini, S. C. E. Tosatto, FELLS: Fast estimator of latent local structure. Bioinformatics 33, 1889-1891 (2017).
  128. T. Ishida, K. Kinoshita, Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24, 1344-1348 (2008).
  129. A. Drozdetskiy, C. Cole, J. Procter, G. J. Barton, JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 43, W389-W394 (2015).
  130. E. Cilia, R. Pancsa, P. Tompa, T. Lenaerts, W. F. Vranken, The DynaMine webserver: Predicting protein dynamics from sequence. Nucleic Acids Res. 42, W264-W270 (2014).
  131. R. Konrat, The protein meta-structure: A novel concept for chemical and molecular biology. Cell. Mol. Life Sci. 66, 3625-3639 (2009).
  132. I. Callebaut, G. Labesse, P. Durand, A. Poupon, L. Canard, J. Chomilier, B. Henrissat, J. P. Mornon, Deciphering protein sequence information through hydrophobic cluster analysis (HCA): Current status and perspectives. Cell. Mol. Life Sci. 53, 621-645 (1997).
  133. I. Letunic, P. Bork, 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 46, D493-D496 (2018).
  134. A. K. Lancaster, A. Nutter-Upham, S. Lindquist, O. D. King, PLAAC: A web and command- line application to identify proteins with prion-like amino acid composition. Bioinformatics 30, 2501-2502 (2014).
  135. M. P. Hughes, M. R. Sawaya, D. R. Boyer, L. Goldschmidt, J. A. Rodriguez, D. Cascio, L. Chong, T. Gonen, D. S. Eisenberg, Atomic structures of low-complexity protein segments reveal kinked  sheets that assemble networks. Science 359, 698-701 (2018).
  136. B. Bolognesi, N. Lorenzo Gotor, R. Dhar, D. Cirillo, M. Baldrighi, G. G. Tartaglia, B. Lehner, A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Rep. 16, 222-231 (2016).
  137. W. Kabsch, C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637 (1983).
  138. K. G. Tina, R. Bhadra, N. Srinivasan, PIC: Protein interactions calculator. Nucleic Acids Res. 35, W473-W476 (2007).
  139. A. Ortega, D. Amoros, J. Garcia de la Torre, Prediction of hydrodynamic and other solution properties of rigid proteins from atomic-and residue-level models. Biophys. J. 101, 892-898 (2011).
  140. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 (2004).
  141. L. Winter, I. Staszewska, E. Mihailovska, I. Fischer, W. H. Goldmann, R. Schröder, G. Wiche, Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle. J. Clin. Invest. 124, 1144-1157 (2014).
  142. R. K. Das, R. V. Pappu, Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl. Acad. Sci. U.S.A. 110, 13392-13397 (2013).
  143. P. A. Chong, R. M. Vernon, J. D. Forman-Kay, RGG/RG motif regions in RNA binding and phase separation. J. Mol. Biol. 430, 4650-4665 (2018).
  144. V. N. Uversky, C. Santambrogio, S. Brocca, R. Grandori, Length-dependent compaction of intrinsically disordered proteins. FEBS Lett. 586, 70-73 (2012).
  145. V. N. Uversky, Natively unfolded proteins: A point where biology waits for physics. Protein Sci. 11, 739-756 (2002).
  146. A. Kessel, N. Ben-Tal, Introduction to Proteins: Structure, Function, and Motion (Chapman & Hall/CRC Mathematical and Computational Biology Series, CRC Press, Taylor & Francis Group, ed. 2, 2018), pp. lii, 932 pages.
  147. A. Cooper, C. M. Johnson, J. H. Lakey, M. Nollmann, Heat does not come in different colours: Entropy-enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophys. Chem. 93, 215-230 (2001).
  148. F. W. Putnam, The Plasma Proteins: Structure, Function, and Genetic Control (Academic Press, ed. 2, 1975), pp. v. 1-5.
  149. I. Axelsson, Characterization of proteins and other macromolecules by agarose gel chromatography. J. Chromatogr. 152, 21-32 (1978).
  150. A. G. Kikhney, A. Panjkovich, A. V. Sokolova, D. I. Svergun, DARA: A web server for rapid search of structural neighbours using solution small angle x-ray scattering data. Bioinformatics 32, 616-618 (2016).
  151. R. A. Laskowski, M. B. Swindells, LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778-2786 (2011).
  152. the viscometer and SEC-MALS data analysis, Malvern for ITC data analysis, M. Puchinger for help with CD and protein labeling, M. Somlyay for taking pictures of tubes with protein, S. Żerko for help under optimizing conditions for NMR assignment, G. Wiche (University of Vienna) for providing IMMs, T. Oda (University of Yamanashi) for providing the atomic coordinates of the cryo-electron tomography Z-disk model, N. Frey (University of Kiel) for providing clones for FATZ-2 and FATZ-3, E. Stepinac for providing sortase, A. Sedivy (VBCF) for excellent technical assistance, and Life Science Editors for editing assistance. We are also thankful to J. Lah (University of Ljubljana), S. Keller (TU Kaiserslautern), S. Longhi (Architecture et Fonction des Macromolécules Biologiques), T. Gibson (European Molecular Biology Laboratory, Heidelberg), T. Madl (Medical University of Graz), S. Saha (Institute of Molecular Biotechnology Austria) for insightful discussions on ITC data, MoREs, LMs, and LLPS and B. Sponga for advice and discussions on statistical data analysis. A.S. thanks the tutors of the DLS-CCP4 Data Collection and Structure Solution Workshop for helpful discussions. Last, we thank the anonymous reviewers for careful reading of our manuscript and many insightful comments and suggestions. Funding: K.D.-C.'s research was supported by a Marie Curie Initial Training Network: MUZIC (no. 238423);
  153. Austrian Science Fund (FWF) Projects I525, I1593, P22276, P19060, and W1221; Federal Ministry of Economy, Family, and Youth through the initiative "Laura Bassi Centres of Expertise," funding the Centre of Optimized Structural Studies, no. 253275; the Wellcome Trust Collaborative Award (201543/Z/16); COST action BM1405-Non-globular proteins from sequence to structure, function and application in molecular physiopathology (NGP-NET);
  154. WWTF (Vienna Science and Technology Fund) Chemical Biology project LS17-008; Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology; and the Austrian-Slovak Interreg Project B301 StruBioMol, University of Vienna Research Platform Comammox and by the University of Vienna. The work was supported by the Austrian Science Fund FWF grant P30550 to B.Z. M.G. and A.G. were supported by the Wellcome Trust Collaborative Award (201543/Z/16). M.G. holds the British Heart Foundation Chair of Molecular Cardiology. This work was supported by a grant from the Polish National Science Centre to W.K. (MAESTRO, 2015/18/A/ST4/00270). Research in B.W.'s laboratory was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) research FOR 2743, Project ID 403222702/SFB 1381, and Germany's Excellence Strategy (CIBSS-EXC-2189-Project ID 390939984). D.I.S. and C.M.J. acknowledge the support of the European Union's Horizon 2020 research and innovation programme "iNEXT Discovery" grant agreement no. 871037. Author contributions: Conceptualization: A.S., J.L.A., T.C.S., C.M.J., J.K., A.G., A.P., G.F., B.Z., M.G., R.K., and K.D.-C. Investigation: A.S., J.L.A., T.C.S., C.M.J., A.R.C., J.K., A.G., F.D., A.P., E.D.A.R., M.P., A.Z.-K., G.M., T.P., P.D., C.S., E.H., B.M., and L.G. Methodology: A.S., J.L.A., J.K., W.K., D.I.S., B.W., B.Z., M.G., R.K., and K.D.-C. Formal analysis: A.S., J.L.A., T.C.S., C.M.J., A.R.C., J.K., A.G., F.D., A.P., E.D.A.R., A.Z.-K., and K.D.-C. Visualization: J.L.A., A.S., T.C.S., J.K., A.G., and A.P. Data curation: J.L.A., T.C.S., C.M.J., J.K., W.K., D.I.S., B.W., B.Z., M.G., R.K., and K.D.-C. Resources: T.P., G.F., W.K., D.I.S., B.W., B.Z., M.G., R.K., and K.D.-C. Supervision: J.L.A., W.K., D.I.S., B.W., B.Z., M.G., R.K., and K.D.-C. Funding acquisition: K.D.-C., R.K., M.G., B.Z., B.W., D.I.S., and W.K. Writing (original draft): J.L.A., A.S., and K.D.-C. Writing (review and editing): All authors. Competing interests: The authors declare that they have no competing interests. Data and materials availability: The NMR assignments have been deposited in the Biological Magnetic Resonance Data Bank and are available with these links: N-FATZ-1: code 50496, http://deposit.bmrb.wisc.edu/author\_view/ BMRB/50496_hy_ovvteqaa.str. 91-FATZ-1: code 50497, http://deposit.bmrb.wisc.edu/ author_view/BMRB/50497_hy_vmbatcvu.str. The SAXS models have been deposited in the Small Angle Scattering Biological Data Bank and are available with these links: sarcomeric IDP FATZ-1 (N-FATZ-1): code SASDJJ6, www.sasbdb.org/data/SASDJJ6/vwgo25jhz8/; sarcomeric IDP FATZ-1 (91-FATZ-1): code SASDJK6, www.sasbdb.org/data/SASDJK6/c1yxymdokh/;
  155. F-actin cross-linking protein -actinin-2 (hd--actinin-2): code SASDJL6, www. sasbdb.org/data/SASDJL6/miqtomh44s/; sarcomeric F-actin cross-linking protein -actinin-2 (hd--actinin-2): code SASDJM6, www.sasbdb.org/data/SASDJM6/cj4pgogz43/; sarcomeric fuzzy -actinin-2/FATZ-1 complex (rod--actinin-2/91-FATZ-1): code SASDJN6, www.sasbdb. org/data/SASDJN6/zcgyy2rtq5/; and sarcomeric fuzzy -actinin-2/FATZ-1 complex (hd--actinin-2/91-FATZ-1): code SASDJP6, www.sasbdb.org/data/SASDJP6/2hqhr0dwwc/. The crystal structures have been deposited in the PDB and are available with these links: crystal structure of sarcomeric protein FATZ-1 (mini-FATZ-1) in complex with rod--actinin-2: code 7A8T, https://doi.org/10.2210/pdb7A8T/pdb; crystal structure of sarcomeric protein FATZ-1 (91-FATZ-1) in complex with rod--actinin-2: code 7A8U, https://doi.org/10.2210/ pdb7A8U/pdb; and crystal structure of sarcomeric protein FATZ-1 (91-FATZ-1) in complex with hd--actinin-2: code 7ANK, https://doi.org/10.2210/pdb7ANK/pdb. The 3D models presented in Figs. 3 and 4 are available with these links: Fig. 3A: https://skfb.ly/6YvzT, https:// skfb.ly/6YvAN, and https://skfb.ly/6YvB8; Fig. 3B: https://skfb.ly/6YvRV; Fig. 3C: https://skfb. ly/6YvQO; Fig. 4C: https://skfb.ly/6YvTS; Fig. 4D: https://skfb.ly/6YvUE; Fig. 4E: https://skfb. ly/6YvVt; Fig. 4F: https://skfb.ly/6YwQL; and Fig. 4G: https://skfb.ly/6YwZy. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors. Submitted 2 February 2021 Accepted 13 April 2021 Published 28 May 2021 10.1126/sciadv.abg7653 Citation: A. Sponga, J. L. Arolas, T. C. Schwarz, C. M. Jeffries, A. Rodriguez Chamorro, J. Kostan, A. Ghisleni, F. Drepper, A. Polyansky, E. De Almeida Ribeiro, M. Pedron, A. Zawadzka-Kazimierczuk, G. Mlynek, T. Peterbauer, P. Doto, C. Schreiner, E. Hollerl, B. Mateos, L. Geist, G. Faulkner, W. Kozminski, D. I. Svergun, B. Warscheid, B. Zagrovic, M. Gautel, R. Konrat, K. Djinović-Carugo, Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase- separated condensates with -actinin. Sci. Adv. 7, eabg7653 (2021). Downloaded from https://www.science.org on November 29, 2021
  156. Use of think article is subject to the Terms of service Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS. Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Order from disorder in the sarcomere: FATZ forms a fuzzy but tight complex and phase-separated condensates with #-actinin Antonio SpongaJoan L. ArolasThomas C. SchwarzCy M. JeffriesAriadna Rodriguez ChamorroJulius KostanAndrea GhisleniFriedel DrepperAnton PolyanskyEuripedes De Almeida RibeiroMiriam PedronAnna Zawadzka-KazimierczukGeorg MlynekThomas PeterbauerPierantonio DotoClaudia SchreinerEneda HollerlBorja MateosLeonhard GeistGeorgine FaulknerWiktor KozminskiDmitri I. SvergunBettina WarscheidBojan ZagrovicMathias GautelRobert KonratKristina Djinovi#- Carugo Sci. Adv., 7 (22), eabg7653. • DOI: 10.1126/sciadv.abg7653 View the article online https://www.science.org/doi/10.1126/sciadv.abg7653 Permissions https://www.science.org/help/reprints-and-permissions Downloaded from https://www.science.org on November 29, 2021