Platelet Versus Megakaryocyte: Who Is the Real Bandleader of Thromboinflammation in Sepsis? (original) (raw)

NLRP 3 inflammasome activation in platelets in response to sepsis

Physiological Reports

Sepsis is a complex syndrome characterized by organ dysfunction and a dysregulated immune host response to infection. There is currently no effective treatment for sepsis, but platelets have been proposed as a potential therapeutic target for the treatment of sepsis. We hypothesized that the NLRP3 inflammasome is activated in platelets during sepsis and may be associated with multiorgan injury in response to polymicrobial sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in 12-to 13-week-old male Sprague-Dawley rats. The necrotic cecum was removed at 24 h post-CLP. At 72 h post-CLP, activated platelets were significantly increased in CLP versus Sham rats. Colocalization of NLRP3 inflammasome components was observed in platelets from CLP rats at 72 h post-CLP. Plasma, pulmonary, and renal levels of IL-1b and IL-18 were significantly higher in CLP rats compared to Sham controls. Soluble markers of endothelial permeability were increased in CLP versus Sham. Renal and pulmonary histopathology were markedly elevated in CLP rats compared to Sham controls. NLRP3 is activated in platelets in response to CLP and is associated with inflammation, endothelial permeability and multiorgan injury. Our results indicate that activated platelets may play a role to cause multiorgan injury in sepsis and may have therapeutic potential for the treatment of sepsis multiorgan injury.

Platelets Are Critical Key Players in Sepsis

International Journal of Molecular Sciences, 2019

Host defense against infection is based on two crucial mechanisms: the inflammatory response and the activation of coagulation. Platelets are involved in both hemostasis and immune response. These mechanisms work together in a complex and synchronous manner making the contribution of platelets of major importance in sepsis. This is a summary of the pathophysiology of sepsis-induced thrombocytopenia, microvascular consequences, platelet-endothelial cells and platelet–pathogens interactions. The critical role of platelets during sepsis and the therapeutic implications are also reviewed.

Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation

International Journal of Molecular Sciences, 2022

There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbβ3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet–neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet–monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.

Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation

Journal of Thrombosis and Haemostasis, 2011

It has become clear that platelets are not simply cell fragments that plug the leak in a damaged blood vessel; they are, in fact, also key components in the innate immune system, which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the cells that respond first to a site of injury, they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets, which usually triggers platelet activation and the secretion of antimicrobial peptides. The main platelet receptors that mediate these interactions are glycoprotein (GP)IIb-IIIa, GPIba, FccRIIa, complement receptors, and TLRs. This process may involve direct interactions between bacterial proteins and the receptors, or can be mediated by plasma proteins such as fibrinogen, von Willebrand factor, complement, and IgG. Here, we review the variety of interactions between platelets and bacteria, and look at the potential for inhibiting these interactions in diseases such as infective endocarditis and sepsis.

Platelets promote bacterial dissemination in a mouse model of streptococcal sepsis

Microbes and Infection, 2013

Platelets have been reported to contribute to inflammation and inflammatory disorders. In the present study, we demonstrate that platelets contribute to the acute response to bacterial infection in a mouse model of invasive Streptococcus pyogenes infection. Thrombocytopenia occurred rapidly in infected animals and this was associated with platelet activation, formation of plateleteneutrophil complexes and neutrophil activation. In order to assess the role of platelets during infection, platelets were depleted prior to infection. Platelet-depleted animals had significantly decreased plateleteneutrophil complex formation and neutrophil activation in response to infection. Importantly, significantly fewer bacteria disseminated to the blood, lungs, and spleen of platelet-depleted animals. Platelet-depleted animals did not decrease as significantly in weight as the infected control animals. The results demonstrate a previously unappreciated role for platelets during the pathophysiological response to infection, whereby S. pyogenes bacteria bind to platelets and platelets facilitate bacterial dissemination.

Current viewpoints on platelet contribution to inflammation

Inflammation is an underlying feature of a variety of human diseases. Because inflammatory diseases are a major cause of morbidity and mortality in developed countries, understanding the interaction of the most important factors involved is an important challenge. Although platelets are widely recognized as having a critical role in primary hemostasis and thrombosis, basic and clinical evidence increasingly identifies these enucleated cells as relevant modulators, as both effector and target cells, of the inflammatory response. The cross-talk between platelets, endothelial cells and leukocytes in the inflammatory milieu mat be seen as a double-edged sword which functions not only as an effective first-line defense mechanism but may also lead to organ failure and death in the absence of counter-regulation systems. The molecular mechanisms involved in the reciprocal activation of platelets, endothelial cells and leukocytes are beginning to be elucidated. In the light of the existing d...

From Classical to Unconventional: The Immune Receptors Facilitating Platelet Responses to Infection and Inflammation

Biology

Platelets have long been recognized for their role in maintaining the balance between hemostasis and thrombosis. While their contributions to blood clotting have been well established, it has been increasingly evident that their roles extend to both innate and adaptive immune functions during infection and inflammation. In this comprehensive review, we describe the various ways in which platelets interact with different microbes and elicit immune responses either directly, or through modulation of leukocyte behaviors.

Innate immune receptors in platelets and platelet‐leukocyte interactions

Journal of Leukocyte Biology, 2020

Platelets are chief cells in hemostasis. Apart from their hemostatic roles, platelets are major inflammatory effector cells that can influence both innate and adaptive immune responses. Activated platelets have thromboinflammatory functions linking hemostatic and immune responses in several physiological and pathological conditions. Among many ways in which platelets exert these functions, platelet expression of pattern recognition receptors (PRRs), including TLR, Nod-like receptor, and C-type lectin receptor families, plays major roles in sensing and responding to pathogen-associated or damage-associated molecular patterns (PAMPs and DAMPs, respectively). In this review, an increasing body of evidence is compiled showing the participation of platelet innate immune receptors, including PRRs, in infectious diseases, sterile inflammation, and cancer. How platelet recognition of endogenous DAMPs participates in sterile inflammatory diseases and thrombosis is discussed. In addition, platelet recognition of both PAMPs and DAMPs initiates platelet-mediated inflammation and vascular thrombosis in infectious diseases, including viral, bacterial, and parasite infections. The study also focuses on the involvement of innate immune receptors in platelet activation during cancer, and their contribution to tumor microenvironment development and metastasis. Finally, how innate immune receptors participate in platelet communication with leukocytes, modulating leukocyte-mediated inflammation and immune functions, is highlighted. These cell communication processes, including platelet-induced release of neutrophil extracellular traps, platelet Ag presentation to T-cells and platelet modulation of monocyte cytokine secretion are discussed in the context of infectious and sterile diseases of major concern in human health, including cardiovascular diseases, dengue, HIV infection, sepsis, and cancer.

Platelets and Multi-Organ Failure in Sepsis

International Journal of Molecular Sciences

Platelets have received increasing attention for their role in the pathophysiology of infectious disease, inflammation, and immunity. In sepsis, a low platelet count is a well-known biomarker for disease severity and more recently authors have focused their attention on the active role of platelets in the pathogenesis of multi-organ failure. Septic shock is characterised by a dysregulated inflammatory response, which can impair the microcirculation and lead to organ injury. Being at the crossroads between the immune system, clotting cascade, and endothelial cells, platelets seem to be an appealing central mediator and possible therapeutic target in sepsis. This review focuses on the pathogenic role of platelets in septic organ dysfunction in humans and animal models.