Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3 (original) (raw)

Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in Acidithiobacillus ferrooxidans?

Research in microbiology, 2016

To clarify the pathway of anaerobic sulfur oxidation coupled with dissimilatory ferric iron reduction in Acidithiobacillus ferrooxidans strain CCM 4253 cells, we monitored their energy metabolism gene transcript profiles. Several genes encoding electron transporters involved in aerobic iron and sulfur respiration were induced during anaerobic growth of ferrous iron-grown cells. Most sulfur metabolism genes were either expressed at the basal level or their expression declined. However, transcript levels of genes assumed to be responsible for processing of elemental sulfur and other sulfur intermediates were elevated at the beginning of the growth period. In contrast, genes with predicted functions in formation of hydrogen sulfide and sulfate were significantly repressed. The main proposed mechanism involves: outer membrane protein Cyc2 (assumed to function as a terminal ferric iron reductase); periplasmic electron shuttle rusticyanin; c4-type cytochrome CycA1; the inner membrane cyto...

Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis

Antonie van Leeuwenhoek, 2013

In contrast to iron-oxidizing Acidithiobacillus ferrooxidans, A. ferrooxidans from a stationary phase elemental sulfur-oxidizing culture exhibited a lag phase in pyrite oxidation, which is similar to its behaviour during ferrous iron oxidation. The ability of elemental sulfur-oxidizing A. ferrooxidans to immediately oxidize ferrous iron or pyrite without a lag phase was only observed in bacteria obtained from growing cultures with elemental sulfur. However, these cultures that shifted to ferrous iron oxidation showed a low rate of ferrous iron oxidation while no growth was observed. Two-dimensional gel electrophoresis was used for a quantitative proteomic analysis of the adaptation process when bacteria were switched from elemental sulfur to ferrous iron. A comparison of total cell lysates revealed 39 proteins whose increase or decrease in abundance was related to this phenotypic switching. However, only a few proteins were closely related to iron and sulfur metabolism. Reverse-transcription quantitative PCR was used to further characterize the bacterial adaptation process. The expression profiles of selected genes primarily involved in the ferrous iron oxidation indicated that phenotypic switching is a complex process that includes the activation of genes encoding a membrane protein, maturation proteins, electron transport proteins and their regulators.

Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans

Applied and environmental microbiology, 2013

Updated information and services can be found at: These include: SUPPLEMENTAL MATERIAL Supplemental material REFERENCES http://aem.asm.org/content/79/7/2172#ref-list-1 at: This article cites 59 articles, 17 of which can be accessed free CONTENT ALERTS more» articles cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders: http://journals.asm.org/site/subscriptions/ To subscribe to to another ASM Journal go to: on April 5, 2013 by INIST-CNRS BiblioVie

Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans

BMC Genomics, 2009

Background: Acidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH. Although an initial model for the electron pathways involved in iron oxidation has been developed, much less is known about the sulfur oxidation in this microorganism. In addition, what has been reported for both iron and sulfur oxidation has been derived from different A. ferrooxidans strains, some of which have not been phylogenetically characterized and some have been shown to be mixed cultures. It is necessary to provide models of iron and sulfur oxidation pathways within one strain of A. ferrooxidans in order to comprehend the full metabolic potential of the pangenome of the genus.

Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms

Biotechnology and Bioengineering, 2007

An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5°C than at 30°C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7°C is that ferric iron remained in the soluble phase whereas, at 21°C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5°C. Biotechnol. Bioeng. 2007; 97: 1205–1215. © 2006 Wiley Periodicals, Inc.

Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS

Antonie van Leeuwenhoek, 2012

Elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans was investigated. The apparent Michaelis constant for ferric iron was 18.6 mM. An absence of anaerobic ferric iron reduction ability was observed in bacteria maintained on elemental sulfur for an extended period of time. Upon transition from ferrous iron to elemental sulfur medium, the cells exhibited similar kinetic characteristics of ferric iron reduction under anaerobic conditions to those of cells that were originally maintained on ferrous iron. Nevertheless, a total loss of anaerobic ferric iron reduction ability after the sixth passage in elemental sulfur medium was demonstrated. The first proteomic screening of total cell lysates of anaerobically incubated bacteria resulted in the detection of 1599 protein spots in the master two-dimensional electrophoresis gel. A set of 59 more abundant and 49 less abundant protein spots that changed their protein abundances in an anaerobiosis-dependent manner was identified and compared to iron-and sulfur-grown cells, respectively. Proteomic analysis detected a significant increase in abundance under anoxic conditions of electron transporters, such as rusticyanin and cytochrome c 552 , involved in the ferrous iron oxidation pathway. Therefore we suggest the incorporation of rus-operon encoded proteins in the anaerobic respiration pathway. Two sulfur metabolism proteins were identified, pyridine nucleotide-disulfide oxidoreductase and sulfide-quinone reductase. The important transcription regulator, ferric uptake regulation protein, was anaerobically more abundant. The anaerobic expression of several proteins involved in cell envelope formation indicated a gradual adaptation to elemental sulfur oxidation.

Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans

Biochemical Engineering Journal, 2010

The biological oxidation of ferrous iron is an important sub-process in the bioleaching of metal sulfides and other bioprocesses such as the removal of H 2 S from gases, the desulfurization of coal and the treatment of acid mine drainage (AMD). As a consequence, many Fe(II) oxidation kinetics studies have mostly been carried out with mesophilic microorganisms, but only a few with moderately thermophilic microorganisms. In this work, the ferrous iron oxidation kinetics in the presence of Sulfobacillus thermosulfidooxidans (DSMZ 9293) was studied. The experiments were carried out in batch mode (2L STR) and the effect of the initial ferrous iron concentration (2-20 g L −1 ) on both the substrate consumption and bacterial growth rate was assessed. The Monod equation was applied to describe the growth kinetics of this microorganism and values of max and K s of 0.242 h −1 and 0.396 g L −1 , respectively, were achieved. Due to the higher temperature oxidation, potential benefits on leaching kinetics are forecasted.

Oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans

Applied and …, 1988

The oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans that was absorbed and unabsorbed onto the surface of sulfur prills was studied. Unadsorbed sulfur-grown cells oxidized ferrous iron at a rate that was 3 to 7 times slower than that of ferrous iron-grown cells, but sulfur-grown cells were able to reach the oxidation rate of the ferrous iron-adapted cells after only 1.5 generations in a medium containing ferrous iron. Bacteria that were adsorbed to sulfur prills oxidized ferrous iron at a rate similar to that of unadsorbed sulfur-grown bacteria. They also showed the enhancement of ferrous iron oxidation activity in the presence of ferrous iron, even though sulfur continued to be available to the bacteria in this case. An increase in the level of rusticyanin together with the enhancement of the ferrous iron oxidation rate were observed in both sulfur-adsorbed and unadsorbed cells. On the other hand, sulfur oxidation by the adsorbed bacteria was not affected by the presence of ferrous iron in the medium. When bacteria that were adsorbed to sulfur prills were grown at a higher pH (ca. 2.5) in the presence of ferrous iron, they rapidly lost both ferrous iron and sulfur oxidation capacities and became inactive, apparently because of the deposition of a jarosite-like precipitate onto the surface to which they were attached.

Analysis of the Oxidation: Reduction Potential and Bacterial Population of Acidithiobacillus ferrooxidans during the Bioleaching Study of Sulfide Ores

IntechOpen eBooks, 2023

The analysis of the variables, bacterial population, and oxidation-reduction potential (ORP) during the bioleaching of sulfide ores by a bacterial strain of Acidithiobacillus ferrooxidans, isolated from acid mine effluent, aims at the solubilization of copper and the liberation of the gold present in an ore containing more than 80% sulfides. It was studied at different pulp densities (1, 2, and 6%-W/V) and with a 9 k medium at different ferrous sulfate concentrations (0, 3, 6, 9, 12, and 15 g/L), keeping temperature and pH constant. The tests were carried out in three consecutive stages, starting with inoculum, whose cell content was 7.05x10 7 Cell/mL, then the strain with the highest population obtained in the previous stage was used, observing the variation in the periods of adaptation and growth. During the bioleaching of sulfide ores, in the first stage, the maximum bacterial population achieved was 4.75x10 7 Cell/mL in 24 days with 6 g/L ferrous sulfate, in the second stage, the maximum population was 6.30x10 7 Cell/mL without the addition of ferrous sulfate, and in the third stage, the bacterial population became 4.51x10 7 Cell/mL. The exponential characteristic growth of the population started at approximately 13, 8, and 3 days, respectively in each stage.