Overview of the current promising approaches for the development of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (original) (raw)

Challenges and Progress in Vaccine Development for COVID-19 Coronavirus (SARS-CoV-2): A Review

The Open COVID Journal

Coronavirus Infectious Disease (COVID-19) has taken heavy toll on human lives and world economy across the globe. Till date, there is no specific treatment and pathological effects in COVID-19 are continuously evolving. The governments and authorities have announced various measures for personal care with use of face masks, physical distancing and prohibition of mass gatherings. These measures have certainly helped to contain the disease but with substantial economic slowdown. Thus mass immunization by vaccination is the top priority. With knowledge of MERS-SARS (Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome) in hand, researchers are rushing to vaccine development against SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) with newer technological platforms. However, the challenge lies in proving safety, quality and efficacy of vaccine with its resilience to manufacture it in large scales within stipulated time frame. The time consuming nature of cl...

Review of Current Vaccine Development Strategies to Prevent Coronavirus Disease 2019 (COVID-19)

Toxicologic Pathology

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak that started in Wuhan, China, in 2019 resulted in a pandemic not seen for a century, and there is an urgent need to develop safe and efficacious vaccines. The scientific community has made tremendous efforts to understand the disease, and unparalleled efforts are ongoing to develop vaccines and treatments. Toxicologists and pathologists are involved in these efforts to test the efficacy and safety of vaccine candidates. Presently, there are several SARS-CoV-2 vaccines in clinical trials, and the pace of vaccine development has been highly accelerated to meet the urgent need. By 2021, efficacy and safety data from clinical trials are expected, and potentially a vaccine will be available for those most at risk. This review focuses on the ongoing SARS-CoV-2 vaccine development efforts with emphasis on the nonclinical safety assessment and discusses emerging preliminary data from nonclinical and clinical studies. ...

COVID-19 Vaccine: The Fight Against SARS-CoV-2 Infection

Vantage: Journal of Thematic Analysis, 2021

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the pandemic in the year 2020, leading to disruption of the healthcare system with a great impact on socio-economy worldwide. Owing to this, an accelerated development of safe and efficient vaccines is required to fight against this virus. In this line, various vaccine development platforms have been exploited globally in order to manage the exponentially increasing rate of infection and mortality. Some vaccines in clinical phase trials have entered into emergency use authorization by few countries while others are in a preclinical stage. The present review summarizes the various platforms of vaccine development and also gives an insight into the vaccination programme initiated in India.

Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update

Frontiers in Immunology, 2021

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly pathogenic novel virus that has caused a massive pandemic called coronavirus disease 2019 (COVID-19) worldwide. Wuhan, a city in China became the epicenter of the outbreak of COVID-19 in December 2019. The disease was declared a pandemic globally by the World Health Organization (WHO) on 11 March 2020. SARS-CoV-2 is a beta CoV of the Coronaviridae family which usually causes respiratory symptoms that resemble common cold. Multiple countries have experienced multiple waves of the disease and scientific experts are consistently working to find answers to several unresolved questions, with the aim to find the most suitable ways to contain the virus. Furthermore, potential therapeutic strategies and vaccine development for COVID-19 management are also considered. Currently, substantial efforts have been made to develop successful and safe treatments and SARS-CoV-2 vaccines. Some vaccines, such as inactivated vaccin...

The Current Status and Challenges in the Development of Vaccines and Drugs against Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2)

BioMed Research International

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection causes coronavirus disease-19 (COVID-19), which is characterized by clinical manifestations such as pneumonia, lymphopenia, severe acute respiratory distress, and cytokine storm. S glycoprotein of SARS-CoV-2 binds to angiotensin-converting enzyme II (ACE-II) to enter into the lungs through membrane proteases consequently inflicting the extensive viral load through rapid replication mechanisms. Despite several research efforts, challenges in COVID-19 management still persist at various levels that include (a) availability of a low cost and rapid self-screening test, (b) lack of an effective vaccine which works against multiple variants of SARS-CoV-2, and (c) lack of a potent drug that can reduce the complications of COVID-19. The development of vaccines against SARS-CoV-2 is a complicated process due to the emergence of mutant variants with greater virulence and their ability to invoke intricate lung pathophysiolo...

Fundamental and Advanced Therapies, Vaccine Development against SARS-CoV-2

Pathogens

Coronavirus disease (COVID-19) caused by the SARS-CoV-2 virus has been affecting the world since the end of 2019. The severity of the disease can range from an asymptomatic or mild course to acute respiratory distress syndrome (ARDS) with respiratory failure, which may lead to death. Since the outbreak of the pandemic, scientists around the world have been studying the genome and molecular mechanisms of SARS-CoV-2 infection to develop effective therapies and prevention. In this review, we summarize the progressive development of various treatments and vaccines as they have emerged, a year after the outbreak of the pandemic. Initially for COVID-19, patients were recommended drugs with presumed antiviral, anti-inflammatory, and antimicrobial effects that were previously used to treat other diseases. Thereafter, therapeutic interventions were supplemented with promising approaches based on antibodies, peptides, and stem cells. However, licensed COVID-19 vaccines remain the most effecti...

Prospective on Different Approaches for Vaccine Development Against COVID-19: Past Lessons and Future Challenges.pdf

2019

Since the reemergence of a severe acute respiratory syndrome caused by a novel coronavirus (SARS-CoV-2), the disease caused by this virus, known as COVID-19, has been spreading rapidly all around the world. As of early June 2020, COVID-19 has infected more that 6.6 million people, and has caused more than 390,000 deaths, globally. Similar to its pioneers, namely SARS-CoV and MERS-CoV, there is currently no vaccine or specific antiviral treatment against this virus. This review provides a timely overview on efforts as well as different platforms used for developing an effective vaccine against COVID-19.

A comprehensive overview of vaccines developed for pandemic viral pathogens over the past two decades including those in clinical trials for the current novel SARS-CoV-2

RSC Advances, 2021

The unprecedented coronavirus disease 2019 (COVID-19) is triggered by a novel strain of coronavirus namely, Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Researchers are working around the clock to control this pandemic and consequent waves of viral reproduction, through repurposing existing drugs as well as designing new vaccines. Several countries have hastened vaccine design and clinical trials to quickly address this outbreak. Currently, more than 250 aspirants against SARS-CoV-2 are in progress, including mRNA-replicating or non-replicating viral vectored-, DNA-, autologous dendritic cell-based-, and inactivated virus-vaccines. Vaccines work by prompting effector mechanisms such as cells/molecules, which target quickly replicating pathogens and neutralize their toxic constituents. Vaccine-stimulated immune effectors include adjuvant, affinity, avidity, affinity maturation, antibodies, antigen-presenting cells, B lymphocytes, carrier protein, CD4+ T-helper cells....

SARS-CoV-2 Leading Vaccine Candidates: Progress and Development

Life and Science, 2020

The coronavirus disease 2019 (COVID-19) outbreak that originated in China in December 2019, spread globally and was declared a public health emergency of international concern by WHO. The genome sequence of novel coronavirus (SARS-CoV-2) was made available publicly in an unprecedented time that allowed rapid research and development to combat this deadly virus. Due to the absence of therapeutics, vaccines could be a promising solution towards the control and prevention of SARS-CoV-2 infections. As a quick response to this pandemic, the already established vaccine platforms are being explored for development of an effective vaccine against SARS-CoV-2. Thus, the clinical trials to evaluate the safety and efficacy of experimental vaccines are emerging in a record time. In this review various vaccine strategies that include nucleic acid (mRNA and DNA), viral vector based, partial or complete genome based inactivated, and protein subunit vaccines are summarized. We have also highlighted ...