Ground deformation reveals the scale-invariant conduit dynamics driving explosive basaltic eruptions (original) (raw)

Volcano inflation prior to an eruption: Numerical simulations based on a 1-D magma flow model in an open conduit

Earth, Planets and Space, 2013

We numerically simulate volcanic inflation caused by magma ascent in a shallow conduit at volcanoes which repeatedly erupt, in order to understand the effect of volatile behavior on magma from geodetic data. Considering magma in which the relative velocities between melt and gas bubbles are negligible, we model magma flow in a one-dimensional open conduit with diffusive gas bubble growth. We calculate the ground displacements and tilts caused by spatio-temporal changes of magma pressure in the conduit. Our simulations show that magma without volatiles causes decelerated changes in volcanic inflation. Magma with gas bubble growth inflates the volcano with a constant, or accelerated, rate. Temporal changes of volcanic deformation are also affected by the magma pressure at the bottom of the conduit. When the pressure is small, the displacements and tilts increase in proportion to the 1.5th power of time. This time rate is similar to that predicted from a basic gas bubble growth model. When the pressure equals the lithostatic pressure, the effects of gas bubble growth relatively decrease and the displacements and tilts increase linearly with time.

Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption

Nature Communications, 2015

Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

Volcanic conduit controls on effusive-explosive transitions and the 2010 eruption of Merapi Volcano (Indonesia)

Journal of Volcanology and Geothermal Research

Individual volcanoes can produce both effusive and explosive eruptions. A transition between these two eruption styles dramatically changes the hazards and can occur either between distinct eruption events or within one eruption episode. The causes of these transitions are difficult to determine due to the number of system parameters that can influence whether or not magma fragments in a runaway process. We apply a numerical model of magma ascent in a volcanic conduit to isolate and test the effects of key parameters related to magma rheology and system geometry. We find that for a given volcanic system, parameters that control magma viscosity, such as initial water mass fraction, initial crystal volume fraction, and temperature, have the greatest influence on whether or not magma fragments during ascent and erupts explosively. We also define a 'critical condition' for the full set of initial parameters under which a transition in eruption style, from effusive to explosive or the reverse, is more likely to occur. Under these conditions, small heterogeneities in the water or crystal content of the magma, or small perturbations to the conduit pressure gradient due to magma chamber overpressure or dome growth or collapse, can disrupt the magmatic conditions and cause a transition in eruption style. The 2010 VEI 4 eruption of Merapi Volcano included both effusive and explosive phases and was larger by an order of magnitude than its eruptions during the previous century. We constrain our model for the Merapi system using published literature values and show that between the previous eruption in 2006 and the 2010 eruption, the shallow magmatic system at Merapi reached critical conditions due to the ascent from depth of a large, hotter, more volatile-rich magma. Under these critical conditions and according to our model results, small changes in the volatile content of the magma, small dome collapses, subtle changes in degassing rate, or the addition of CO 2 to the magma through decarbonation of the bedrock, are all feasible mechanisms for triggering rapid transitions between effusive and explosive activity during the 2010 eruption period.

The mechanics of large volcanic eruptions

The mechanical conditions for a volcanic eruption to occur are conceptually simple: a magma-driven fracture (normally a dyke) must be able to propagate from the source to the surface. The mechanics of small to moderate (eruptive volumes less than 10 km 3) is reasonably well understood, whereas that of large eruptions (eruptive volumes of 10-1000 km 3) is poorly understood. Here I propose that, while both large and small eruptions are primarily driven by elastic energy and may come from the same magma chambers and reservoirs, the mechanisms by which the elastic energy is transformed or relaxed in these eruptions are different. More specifically, during small to moderate eruptions, the excess pressure in the source (the primary pressure driving the eruption) falls exponentially until it approaches zero, whereby the feeder-dyke closes at its contact with the source and the eruption comes to an end. Under normal conditions, the ratio of the eruptive and intrusive material of the eruption to the volume of a totally molten shallow basaltic crustal magma chamber (at the common depth of 1-5 km) is about 1400, and that of a partially molten deep-seated basaltic magma reservoir (in the lower crust or upper mantle) is about 5000. Many magma chambers are partially molten, in which case the ratio could be close to that of reservoirs. Most magma chambers are estimated to be less than about 500 km 3 , for which the maximum eruptive volume would normally be about 0.4 km 3. An eruptive volume of 1 km 3 would require a totally molten chamber of about 1400 km 3. While chambers of this size certainly exist, witness the volumes of the largest eruptions, large eruptions of 10-1000 km 3 clearly require a different mechanism, namely one whereby the excess pressure maintenance during the eruption. I suggest that the primary excess-pressure maintenance mechanism is through caldera subsidence for shallow magma chambers and graben subsidence for deep-seated magma reservoirs. In this mechanism, it is the subsidence, of tectonic origin, and associated volume reduction (shrinkage) of the magma source that drives out an exceptionally large fraction of the magma in the source, thereby generating the large eruption. Most explosive eruptions that exceed volumes of about 25 km 3 , and many smaller, are associated with caldera collapses. The data presented suggest that many large effusive basaltic eruptions, in Iceland, in the United States, and elsewhere, are associated with large graben subsidences In terms of the present mechanism, successful forecasting large of eruptions requires understanding and monitoring of the volcanotectonic conditions that trigger large caldera and graben subsidences.

Effusive to explosive transition during the 2003 eruption of Stromboli volcano

Geology, 2005

The persistent explosive activity of Stromboli volcano (Italy) ceased in December 2002 and correlated with the onset of a seven-month-long effusive eruption on the volcano flank from new vents that opened just below the summit craters. We intensively monitored this effusive event, collecting and interpreting, in real time, an extensive multiparametric geophysical data set. The resulting data synergy allowed detailed insights into the conduit dynamics that drove the eruption and the transition back to the typical Strombolian activity. We present a direct link between gas flux, magma volume flux, and seismicity, supporting a gas driven model whereby the balance between gas flux and gas overpressure determines whether the system will support effusive or explosive activity. This insight enabled us to monitor the migration of the magma column up the conduit and to explain the onset of explosive activity.

Dynamics of Strombolian explosions: Inferences from field and laboratory studies of erupted bombs from Stromboli volcano

Journal of Geophysical Research: Solid Earth, 2014

Strombolian activity is characterized by repeated, low energy, explosions and is named after the volcano where such activity has persisted for around 2000 years, i.e., Stromboli (Aeolian Islands, Italy). Stromboli represents an excellent laboratory where measurements of such explosions can be made from safe, but close, distances. During a field campaign in 2008, two 15 cm diameter bombs were quenched and collected shortly after a normal explosion. The bombs were characterized in terms of their textural, chemical, rheological, and geophysical signatures. The vesicle and crystal size distribution of the samples, coupled with the glass chemistry, enabled us to quantify variations in the degassing history and rheology of the magma resident in the shallow (i.e., in last 250 m of conduit length). The different textural facies observed in these bombs showed that fresh magma was mingled with batches of partially to completely degassed, oxidized, high-crystallinity, high-viscosity, evolved magma. This magma sat at the top of the conduit and played only a passive role in the explosive process. The fresh, microlite-poor, vesiculated batch, however, experienced a response to the explosive event, by undergoing rapid decompression. Integration of geophysical measurements with sample analyses indicates that popular bubble-bursting models may not fit this case. We suggest that the degassed, magma forms a plug, or rheological layer, at the top of the conduit, through which the fresh magma bursts. In this model we need to consider the paradox of a slug ascending too fast through a magma of varying viscosity and yield strength. GURIOLI ET AL.

Earthquake induced variations in extrusion rate: A numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia)

Earth and Planetary Science Letters

Extrusion rates during lava dome-building eruptions are variable and eruption sequences at these volcanoes generally have multiple phases. Merapi Volcano, Java, Indonesia, exemplifies this common style of activity. Merapi is one of Indonesia's most active volcanoes and during the 20th and early 21st centuries effusive activity has been characterized by long periods of very slow (<0.1 m 3 s −1) extrusion rate interrupted every few years by short episodes of elevated extrusion rates (1-4 m 3 s −1) lasting weeks to months. One such event occurred in May-July 2006, and previous research has identified multiple phases with different extrusion rates and styles of activity. Using input values established in the literature, we apply a 1D, isothermal, steady-state numerical model of magma ascent in a volcanic conduit to explain the variations and gain insight into corresponding conduit processes. The peak phase of the 2006 eruption occurred in the two weeks following the May 27 M w 6.4 earthquake 50 km to the south. Previous work has suggested that the peak extrusion rates observed in early June were triggered by the earthquake through either dynamic stress-induced overpressure or the addition of CO 2 due to decarbonation and gas escape from new fractures in the bedrock. We use the numerical model to test the feasibility of these proposed hypotheses and show that, in order to explain the observed change in extrusion rate, an increase of approximately 5-7 MPa in magma storage zone overpressure is required. We also find that the addition of ∼1000 ppm CO 2 to some portion of the magma in the storage zone following the earthquake reduces water solubility such that gas exsolution is sufficient to generate the required overpressure. Thus, the proposed mechanism of CO 2 addition is a viable explanation for the peak phase of the Merapi 2006 eruption. A time-series of extrusion rate shows a sudden increase three days following the earthquake. We explain this three-day delay by the combined time required for the effects of the earthquake and corresponding CO 2 increase to develop in the magma storage system (1-2 days), and the time we calculate for the affected magma to ascend from storage zone to surface (40 h). The increased extrusion rate was sustained for 2-7 days before dissipating and returning to pre-earthquake levels. During this phase, we estimate that 3.5 million m 3 DRE of magma was erupted along with 11 ktons of CO 2. The final phase of the 2006 eruption was characterized by highly variable extrusion rates. We demonstrate that those changes were likely controlled by failure of the edifice that had been confining the dome to Merapi's crater and subsequent large dome collapses. The corresponding reductions in confining pressure caused increased extrusion rates that rapidly rebuilt the dome and led to further collapses, a feedback cycle that prolonged the eruption. In a more general sense, this study demonstrates that both internal changes, such as magma volatile content and overpressure, and external forces, such as edifice collapse and regional earthquakes, can affect variations in eruption intensity. Further, we also demonstrate how these external forces can initiate internal changes and how these parameters may interact with one another in a feedback scenario.

Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004–05

Nature, 2006

The 2004-05 eruption of Mount St Helens exhibited sustained, near-equilibrium behaviour characterized by relatively steady extrusion of a solid dacite plug and nearly periodic shallow earthquakes. Here we present a diverse data set to support our hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upwards by ascending, solidifying, gas-poor magma. We formalize this hypothesis with a dynamical model that reveals a strong analogy between behaviour of the magma-plug system and that of a variably damped oscillator. Modelled stick-slip oscillations have properties that help constrain the balance of forces governing the earthquakes and eruption, and they imply that magma pressure never deviated much from the steady equilibrium pressure. We infer that the volcano was probably poised in a near-eruptive equilibrium state long before the onset of the 2004-05 eruption.