Non-GCB Diffuse Large B-Cell Lymphoma With an Atypical Disease Course: A Case Report and Clinical Exome Analysis (original) (raw)
Related papers
Proceedings of the National Academy of Sciences, 2012
To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase-mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease.
Oncotarget, 2017
Current understanding of the mutation spectrum of relapsed/refractory (RR) tumors is limited. We performed whole exome sequencing (WES) on 47 diffuse large B cell lymphoma (DLBCL) tumors that persisted after R-CHOP treatment, 8 matched to primary biopsies. We compared genomic alterations from the RR cohort against two treatment-naïve DLBCL cohorts (n=112). While the overall number and types of mutations did not differ significantly, we identified frequency changes in DLBCL driver genes. The overall frequency of MYD88 mutant samples increased (12% to 19%), but we noted a decrease in p.L265P (8% to 4%) and increase in p.S219C mutations (2% to 6%). CARD11 p.D230N, PIM1 p.K115N and CD79B p.Y196C mutations were not observed in the RR cohort, although these mutations were prominent in the primary DLBCL samples. We observed an increase in BCL2 mutations (21% to 38% of samples), BCL2 amplifications (3% to 6% of samples) and CREBBP mutations (31% to 42% of samples) in the RR cohort, supporte...
Leukemia, 2017
Genome studies of diffuse large B-cell lymphoma (DLBCL) have revealed a large number of somatic mutations and structural alterations. However, the clinical significance of these alterations is still not well defined. In this study we have integrated the analysis of targeted next generation sequencing of 106 genes and genomic copy number alterations (CNA) in 150 DLBCL. The clinically significant findings were validated in an independent cohort of 111 patients. Germinal center B-cell and activated B-cell DLBCL had a differential profile of mutations, altered pathogenic pathways and CNA. Mutations in genes of the NOTCH pathway and tumor suppressor genes (TP53/CDKN2A), but not individual genes, conferred an unfavorable prognosis, confirmed in the independent validation cohort. A gene expression profiling analysis showed that tumors with NOTCH pathway mutations had a significant modulation of downstream target genes, emphasizing the relevance of this pathway in DLBCL. An in silico drug d...
The Genetic Landscape of Diffuse Large B Cell Lymphoma
Seminars in Hematology, 2015
Diffuse large B-cell lymphoma (DLBCL), the most common lymphoid malignancy in the western world, is an aggressive disease that remains incurable in approximately 30% of patients. Over the past decade, the rapid expansion of sequencing technologies allowing the genome-wide assessment of genomic and transcriptional changes has revolutionized our understanding of the genetic basis of DLBCL by providing a comprehensive and unbiased view of the genes/pathways that are disrupted by genetic alterations in this disease, and may contribute to tumor initiation and expansion. These studies uncovered the existence of several previously unappreciated alterations in key cellular pathways that may also influence treatment outcome. Indeed, a number of newly identified genetic lesions are currently being explored as markers for improved diagnosis and risk stratification, or are entering clinical trials as promising therapeutic targets. This review focuses on recent advances in the genomic characterization of DLBCL and discusses how information gained from these efforts has provided new insights into its biology, uncovering potential targets of prognostic and therapeutic relevance.
Cureus
Introduction: Next-generation sequencing (NGS) elucidates the diffuse large B-cell lymphoma (DLBCL) genetic characteristics by finding recurrent and novel somatic mutations. This observational study attempted to create an NGS panel with a focus on identifying novel somatic mutations which could have potential clinical and therapeutic implications. This panel was created to look for mutations in 133 genes chosen on basis of a literature review and it was used to sequence the tumor DNA of 20 DLBCL patients after a centralized histopathologic review. Methods: The study included 20 patients having DLBCL. The quality and quantity of tumor cells were accessed by H&E staining and correlated with histopathology and Immunohistochemistry (IHC) status. Patients were grouped as ABC (activated B-cell), PMBL (primary mediastinal large B-cell lymphoma), and other or unclassified subtypes. The lymphoma panel of 133 was designed on targeted sequencing of multiple genes for the coding regions through NGS. The libraries were prepared and sequenced using the Illumina platform. The alignment of obtained sequences was performed using Burrows-Wheeler Aligner and identification of somatic mutations was done using LoFreq (version 2) variant caller. The mutations were annotated using an annotation pipeline (VariMAT). Previously published literature and databases were used for the annotation of clinically relevant mutations. The common variants were filtered for reporting based on the presence in various population databases (1000G, ExAC, EVS, 1000Japanese, dbSNP, UK10K, MedVarDb). A custom read-depth-based algorithm was used to determine CNV (Copy Number Variants) from targeted sequencing experiments. Rare CNVs were detected using a comparison of the test data read-depths with the matched reference dataset. Reportable mutations were prioritized and prepared based on AMP-ASCO-CAP (Association for Molecular Pathology-American Society of Clinical Oncology-College of American Pathologists), WHO guidelines, and also based on annotation metrics from OncoMD (a knowledge base of genomic alterations). Results: The informativity of the panel was 95 percent. NOTCH 1 was the most frequently mutated gene in 16.1% of patients followed by 12.9% who had ARID1A mutations. MYD88 and TP53 mutations were detected in 9.6% of the patient while 6.4% of patients had CSF3R mutations. NOTCH 1 and TP 53 are the most frequently reported gene in the middle age group (40-60). Mutation in MYD88 is reported in every age group. MYD88 (51%) is the most common mutation in ABC subtypes of DLBCL, followed by NOTCH 1 (44%) and SOCS 1 (33%) according to our findings. NOTCH 1 mutations are frequent in ABC and PMBL subtypes. Closer investigation reveals missense mutation is the most frequent mutation observed in the total cohort targeting 68.4% followed by frameshift deletion reported in 26.3%. Six novel variants have been discovered in this study. Conclusions: This study demonstrates the high yield of information in DLBCL using the NGS Lymphoma panel. Results also highlight the molecular heterogeneity of DLBCL subtypes which indicates the need for further studies to make the results of the NGS more clinically relevant.
Genetics of Diffuse Large B-Cell Lymphoma
The Cancer Journal, 2014
Diffuse large B-cell lymphoma (DLBCL) is one the most common forms of non-Hodgkin lymphoma and one of the most aggressive B-cell neoplasms. Although most patients respond to current standard treatments, a significant number of them relapse and become refractory to treatment. Hence, there is a need for new approaches in the management of DLBCL. In recent years, a number of studies using next-generation sequencing (NGS) have contributed to the characterization of the disease and have revealed a set of deregulated cellular mechanisms in DLBCL. However, DLBCL is a very heterogeneous disease and additional work is required in order to achieve a comprehensive understanding of the mechanisms underlying its lymphomagenesis.
Genetic heterogeneity of diffuse large B-cell lymphoma
Proceedings of the National Academy of Sciences, 2013
Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.