4-Hydroxy TEMPO Attenuates Dichlorvos Induced Microglial Activation and Apoptosis (original) (raw)
Related papers
Dichlorvos Exposure Results in Activation Induced Apoptotic Cell Death in Primary Rat Microglia
Chemical Research in Toxicology, 2012
Dichlorvos [2,2-dichlorovinyl dimethyl phosphate] is one of the most common in-use organophosphate (OP) in developing nations. Previous studies from our lab have shown chronic Dichlorvos exposure leads to neuronal cell death in rats. However, the extent of damage caused by Dichlorvos to other cells of the central nervous system (CNS) is still not clear. Microglial cells are the primary threat sensors of CNS which become activated in many pathological conditions. Activation of microglial cells results in reactive microgliosis, manifested by increased cellular damage in the affected regions. Using rat primary microglial cultures, here we show that Dichlorvos exposure can activate and induce apoptotic cell death in microglia. We observed significant up-regulation of pro-inflammatory molecules like nitric oxide, TNF-α, and IL-1β when microglia were treated with Dichlorvos (10 μM). Significant up-regulation of CD11b, microglial specific activation marker, was also observed after 24 h of Dichlorvos treatment. The activated microglial cells eventually undergo cell death after 48 h of Dichlorvos treatment. The DNA fragmentation pattern of Dichlorvos treated microglia along with increased expression of Bax in mitochondria, cytochrome c release from mitochondria, and caspase-3 activation led us to assume that microglia were undergoing apoptosis. Thus, the present study showed that Dichlorvos can induce microglial activation and ultimately apoptotic cell death. These findings gave new perspective to the current knowledge of Dichlorvos (OPs) mediated CNS damage and presents microglial activation as a potential therapeutic target for preventing the OP induced neuronal damage.
Neurotoxicology, 2007
The present study elucidates a possible mechanism by which chronic organophosphate exposure (dichlorvos 6 mg/kg bw, s.c. for 12 weeks) causes neuronal degeneration. Mitochondria, as a primary site of cellular energy generation and oxygen consumption represent itself a likely target for organophosphate poisoning. Therefore, the objective of the current study was planned with an aim to investigate the effect of chronic dichlorvos exposure on mitochondrial calcium uptake, oxidative stress generation and its implication in the induction of neuronal apoptosis in rodent model. Mitochondrial preparation from dichlorvos (DDVP) treated rat brain demonstrated significant increase in mitochondrial Ca 2+ uptake (644.2 nmol/ mg protein). Our results indicated decreased mitochondrial electron transfer activities of cytochrome oxidase (complex IV) along with altered mitochondrial complex I, and complex II activity, which might have resulted from elevated mitochondrial calcium uptake. The alterations in the mitochondrial calcium uptake and mitochondrial electron transfer enzyme activities in turn might have caused an increase in malondialdehyde, protein carbonyl and 8-hydoxydeoxyguanosine formation as a result of enhanced lipid peroxidation, and as well as protein and mtDNA oxidation. All this could have been because of enhanced oxidative stress, decreased GSH levels and also decreased Mn-SOD activity in the mitochondria isolated from dichlorvos treated rat brain. Thus, chronic organophosphate exposure has the potential to disrupt cellular antioxidant defense system which in turn triggers the release of cytochrome c from mitochondria to cytosol as well as caspase-3 activation in dichlorvos treated rat brain as revealed by immunoblotting experiments. Low-level long-term organophosphate exposure finally resulted in oligonucleosomal DNA fragmentation, a hallmark of apoptosis. These studies provide an evidence of impaired mitochondrial bioenergetics and apoptotic neuronal degeneration after chronic low-level exposure to dichlorvos. #
International Immunopharmacology, 2019
Over-activation of microglia disrupts the physiological homeostasis of the brain, and induces inflammatory response and other processes which are implicated in neurodegenerative diseases. Therefore, theoretically, suppression of neuroinflammation would slow the progression of neurodegenerative disease. In this study, we investigated the possible protective effects of Ferulic acid (FA) against benzo(a)pyrene (BaP)-induced microglial activation using BV2 cells as the model system. Exposure of BV2 cells to BaP (10 μM) significantly increased DNA damage and the production of pro-inflammatory mediators, including nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), reactive oxygen species (ROS), malondialdehyde (MDA), and cytokines (interleukins-1β and −6). On the other hand, when BaP-treated BV2 cells were further incubated with FA (10, 20, 40, or 80 mg/mL) for another 24 h, a significant reduction in BaP-induced DNA damage and the release of multiple pro-inflammatory and cytotoxic factors (including interleukin-1β, interleukin-6, NO, and ROS) was observed in a dose-dependent manner. Further study revealed that the microglial NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) signaling pathway was involved in the protective effect of FA. Taken together, these results suggested that FA suppressed BaP-induced toxicity in microglia, and thus may exert neuroprotective effects by inhibiting microglia-mediated pro-inflammatory response.
Protective effect of 1,2,4-benzenetriol on LPS-induced NO production by BV2 microglial cells
Journal of Biomedical Science, 2006
Hydroxyhydroquinone or 1,2,4-benzenetriol (BT) detected in the beverages has a structure that coincides with the water-soluble form of a sesame lignan, sesamol. We previously showed that sesame antioxidants had neuroprotective abilities due to their antioxidant properties and/or inducible nitric oxide synthase (iNOS) inhibition. However, studies show that BT can induce DNA damage through the generation of reactive oxygen species (ROS). Therefore, we were interested to investigate the neuroprotective effect of BT in vitro and in vivo. The results showed that instead of enhancing free radical generation, BT dosedependently (10-100 lM) attenuated nitrite production, iNOS mRNA and protein expression in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. BT significantly reduced LPS-induced NF-jB and p38 MAPK activation. It also significantly reduced the generation of ROS in H 2 O 2-induced BV-2 cells and in H 2 O 2-cellfree conditions. The neuroprotective effect of BT was further demonstrated in the focal cerebral ischemia model of Sprague-Dawley rat. Taken together, the inhibition of LPS-induced nitrite production might be due to the suppression of NF-jB, p38 MAPK signal pathway and the ROS scavenging effect. These effects might help to protect neurons from the ischemic injury.
International journal of clinical and experimental medicine, 2015
In this study, chrysophanol, isolated from a marine fungus, was examined for its protective effects against inflammatory responses and oxidative stress in BV2 microglia. Chrysophanol was studied to assess its capabilities of protecting against lipopolysaccharide (LPS)-induced inflammatory responses in BV2 cells. It was found that chrysophanol reduced the level of nitric oxide (NO) and prostaglandin-E2 (PGE2) production by diminishing reducing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Assessment of the inhibitory activities of chrysophanol on the generation of pro-inflammatory cytokines was also performed. Furthermore, Chrysophanol treatment significantly reduced intracellular reactive oxygen species (ROS)-mediated cell damage and inhibited DNA oxidation in BV2 cells. Moreover, antioxidative mechanisms by of chrysophanol were evaluated investigated by measuring the expression levels of antioxidative enzymes such superoxide dismutase (SOD) and glutat...
Toxicology, 2013
Chloroacetic acid (CA), a toxic chlorinated analog of acetic acid, is widely used in chemical industries as an herbicide, detergent, and disinfectant, and chemical intermediates that are formed during the synthesis of various products. In addition, CA has been found as a by-product of chlorination disinfection of drinking water. However, there is little known about neurotoxic injuries of CA on the mammalian, the toxic effects and molecular mechanisms of CA-induced neuronal cell injury are mostly unknown. In this study, we examined the cytotoxicity of CA on cultured Neuro-2a cells and investigated the possible mechanisms of CA-induced neurotoxicity. Treatment of Neuro-2a cells with CA significantly reduced the number of viable cells (in a dose-dependent manner with a range from 0.1 to 3 mM), increased the generation of ROS, and reduced the intracellular levels of glutathione depletion. CA also increased the number of sub-G1 hypodiploid cells; increased mitochondrial dysfunction (loss of MMP, cytochrome c release, and accompanied by Bcl-2 and Mcl-1 down-regulation and Bax up-regulation), and activated the caspase cascades activations, which displayed features of mitochondria-dependent apoptosis pathway. These CAinduced apoptosis-related signals were markedly prevented by the antioxidant N-acetylcysteine (NAC). Moreover, CA activated the JNK and p38-MAPK pathways, but did not that ERK1/2 pathway, in treated Neuro-2a cells. Pretreatment with NAC and specific p38-MAPK inhibitor (SB203580), but not JNK inhibitor (SP600125) effectively abrogated the phosphorylation of p38-MAPK and attenuated the apoptotic signals (including: decrease in cytotoxicity, caspase-3/-7 activation, the cytosolic cytochrome c release, and the reversed alteration of Bcl-2 and Bax mRNA) in CA-treated Neuro-2a cells. Taken together, these data suggest that oxidative stress-induced p38-MAPK activated pathway-regulated mitochondria-dependent apoptosis plays an important role in CA-caused neuronal cell death.
Autotaxin protects microglial cells against oxidative stress
Free Radical Biology and Medicine, 2012
Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H(2)O(2)) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H(2)O(2)-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that up-regulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system.
Contribution Autotaxin protects microglial cells against oxidative stress
2011
Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H 2 O 2) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H 2 O 2-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that upregulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system.