Analysis of the cholinergic pathology in the P301L tau transgenic pR5 model of tauopathy (original) (raw)

Cholinergic and inflammatory phenotypes in transgenic tau mouse models of Alzheimer’s disease and frontotemporal lobar degeneration

Brain communications, 2020

An early and sizeable loss of basal forebrain cholinergic neurons is a well-characterized feature associated with measurable deficits in spatial learning and cognitive impairment in patients with Alzheimer's disease. In addition, pro-inflammatory glial cells such as astrocytes and microglia may play a key role in the neurodegenerative cascade of Alzheimer's disease and tauopathies. We recently presented two mouse models: Line 1, expressing the truncated tau fragment identified as the core of the Alzheimer's paired helical filament, and Line 66, expressing full-length human tau carrying a double mutation (P301S and G335D). Line 1 mice have a pathology that is akin to Alzheimer's, whilst Line 66 resembles frontotemporal lobar degeneration. However, their cholinergic and inflammatory phenotypes remain elusive. We performed histological evaluation of choline acetyltransferase, acetylcholinesterase, p75 neurotrophin receptor, microglial ionized calcium binding adaptor molecule 1 and astrocytic glial fibrillary acidic protein in the basal forebrain, hippocampus and cortex of these models. A significant lowering of choline acetyltransferase-positive neurons and p75-positive neurons in the basal forebrain of Line 1 at 3, 6 and 9 months was observed in two independent studies, alongside a significant decrease in acetylcholinesterase staining in the cortex and hippocampus. The reductions in choline acetyltransferase positivity varied between 30% and 50% at an age when Line 1 mice show spatial learning impairments. Furthermore, an increase in microglial ionized calcium binding adaptor molecule 1 staining was observed in the basal forebrain, hippocampus and entorhinal cortex of Line 1 at 6 months. Line 66 mice displayed an intact cholinergic basal forebrain, and no difference in p75-positive neurons at 3 or 9 months. In addition, Line 66 exhibited significant microglial ionized calcium binding adaptor molecule 1 increase in the basal forebrain and hippocampus, suggesting a prominent neuroinflammatory profile. Increased concentrations of microglial interleukin-1b and astrocytic complement 3 were also seen in the hippocampus of both Line 1 and Line 66. The cholinergic deficit in Line 1 mice confirms the Alzheimer's disease-like phenotype in Line 1 mice, whilst Line 66 revealed no measurable change in total cholinergic expression, a phenotypic trait of frontotemporal lobar degeneration. These two transgenic lines are therefore suitable for discriminating mechanistic underpinnings between the Alzheimer's and frontotemporal lobar degeneration-like phenotypes of these mice.

Cholinergic Changes in the APP23 Transgenic Mouse Model of Cerebral Amyloidosis

2002

Alzheimer's Disease (AD) is a neurodegenerative disorder that is characterized by extracellular deposits of amyloid-␤ peptide (A␤) and a severe depletion of the cholinergic system, although the relationship between these two events is poorly understood. In the neocortex, there is a loss of cholinergic fibers and receptors and a decrease of both choline acetyltransferase (ChAT) and acetylcholinesterase enzyme activities. The nucleus basalis of Meynert (NBM), which provides the major cholinergic input to the neocortex, undergoes profound neuron loss in AD. In the present study, we have examined the cholinergic alterations in amyloid precursor protein transgenic mice (APP23), a mouse model of cerebral ␤-amyloidosis. In aged APP23 mice, our results reveal modest decreases in cortical cholinergic enzyme activity compared with age-matched wild-type mice. Total cholinergic fiber length was more severely affected, with 29 and 35% decreases in the neocortex of aged APP23 mice compared with age-matched wild-type mice and young transgenic mice, respectively. However, there was no loss of cholinergic basal forebrain neurons in these aged APP23 mice, suggesting that the cortical cholinergic deficit in APP23 mice is locally induced by the deposition of amyloid and is not caused by a loss of cholinergic basal forebrain neurons. To study the impact of cholinergic basal forebrain degeneration on cortical amyloid deposition, we performed unilateral NBM lesions in adult APP23 mice. Three to 8 months after lesioning, a 38% reduction in ChAT activity and significant cholinergic fiber loss were observed in the ipsilateral frontal cortex. There was a 19% decrease in A␤ levels of the ipsilateral compared with contralateral frontal cortex with no change in the ratio of A␤40 to A␤42. We conclude that the severe cholinergic deficit in AD is caused by both the loss of cholinergic basal forebrain neurons and locally by cerebral amyloidosis in the neocortex. Moreover, our results suggest that disruption of the basal cholinergic forebrain system does not promote cerebral amyloidosis in APP23 transgenic mice.

Cholinergic forebrain degeneration in the APPswe/PS1ΔE9 transgenic mouse

Neurobiology of Disease, 2007

The impact of Aβ deposition upon cholinergic intrinsic cortical and striatal, as well as basal forebrain long projection neuronal systems was qualitatively and quantitatively evaluated in young (2-6 months) and middle-aged (10-16 months) APPswe/PS1ΔE9 transgenic (tg) mice. Cholinergic neuritic swellings occurred as early as 2-3 months of age in the cortex and hippocampus and 5-6 months in the striatum of tg mice. However, cholinergic neuron number or choline acetyltransferase (ChAT) optical density measurements remained unchanged in the forebrain structures with age in APPswe/PS1ΔE9 tg mice. ChAT enzyme activity decreased significantly in the cortex and hippocampus of middle-aged tg mice. These results suggest that Aβ deposition has age-dependent effects on cortical and hippocampal ChAT fiber networks and enzyme activity, but does not impact the survival of cholinergic intrinsic or long projection forebrain neurons in APPswe/PS1ΔE9 tg mice.

Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1999

Cholinergic deficits are one of the most consistent neuropathological landmarks in Alzheimer's disease (AD). We have examined transgenic mouse models (PS1M146L, APPK670N,M671L) and a doubly transgenic line (APPK670N,M671L + PS1M146L) that overexpress mutated AD-related genes [presenilin-1 (PS1) and the amyloid precursor protein (APP)] to investigate the effect of AD-related gene overexpression and/or amyloidosis on cholinergic parameters. The size of the basal forebrain cholinergic neurons and the pattern of cholinergic synapses in the hippocampus and cerebral cortex were revealed by immunohistochemical staining for choline acetyltransferase and the vesicular acetylcholine transporter, respectively. At the time point studied (8 months), no apparent changes in either the size or density of cholinergic synapses were found in the PS1M146L mutant relative to the nontransgenic controls. However, the APPK670N,M671L mutant showed a significant elevation in the density of cholinergic sy...

Cholinergic forebrain degeneration in the APPswe/PS1 [Delta] E9 transgenic mouse

Neurobiology of …, 2007

The impact of Aβ deposition upon cholinergic intrinsic cortical and striatal, as well as basal forebrain long projection neuronal systems was qualitatively and quantitatively evaluated in young (2-6 months) and middle-aged (10-16 months) APPswe/PS1ΔE9 transgenic (tg) mice. Cholinergic neuritic swellings occurred as early as 2-3 months of age in the cortex and hippocampus and 5-6 months in the striatum of tg mice. However, cholinergic neuron number or choline acetyltransferase (ChAT) optical density measurements remained unchanged in the forebrain structures with age in APPswe/PS1ΔE9 tg mice. ChAT enzyme activity decreased significantly in the cortex and hippocampus of middle-aged tg mice. These results suggest that Aβ deposition has age-dependent effects on cortical and hippocampal ChAT fiber networks and enzyme activity, but does not impact the survival of cholinergic intrinsic or long projection forebrain neurons in APPswe/PS1ΔE9 tg mice.

Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease

Neurobiology of disease, 2018

Cholinergic basal forebrain neurons of the nucleus basalis of Meynert (nbM) regulate attentional and memory function and are exquisitely prone to tau pathology and neurofibrillary tangle (NFT) formation during the progression of Alzheimer's disease (AD). nbM neurons require the neurotrophin nerve growth factor (NGF), its cognate receptor TrkA, and the pan-neurotrophin receptor p75 for their maintenance and survival. Additionally, nbM neuronal activity and cholinergic tone are regulated by the expression of nicotinic (nAChR) and muscarinic (mAChR) acetylcholine receptors as well as receptors modulating glutamatergic and catecholaminergic afferent signaling. To date, the molecular and cellular relationships between the evolution of tau pathology and nbM neuronal survival remain unknown. To address this knowledge gap, we profiled cholinotrophic pathway genes within nbM neurons immunostained for pS422, a pretangle phosphorylation event preceding tau C-terminal truncation at D421, or...

Exploring the Pathogenesis of Alzheimer Disease in Basal Forebrain Cholinergic Neurons: Converging Insights From Alternative Hypotheses

Frontiers in Neuroscience, 2019

Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary financial and emotional burdens (Apostolova, 2016). Studies of pathogenesis are essential for defining critical molecular and cellular events and for discovering therapies to prevent or mitigate their effects. Through studies of neuropathology, genetic and cellular, and molecular biology recent decades have provided many important insights. Several hypotheses have been suggested. Documentation in the 1980s of selective loss of cholinergic neurons of the basal forebrain, followed by clinical improvement in those treated with inhibitors of acetylycholinesterase, supported the "cholinergic hypothesis of age-related cognitive dysfunction" (Bartus et al., 1982). A second hypothesis, prompted by the selective loss of cholinergic neurons and the discovery of central nervous system (CNS) neurotrophic factors, including nerve growth factor (NGF), prompted the "deficient neurotrophic hypothesis" (Chen et al., 2018). The most persuasive hypothesis, the amyloid cascade hypothesis first proposed more than 25 years ago (Selkoe and Hardy, 2016), is supported by a wealth of observations. Genetic studies were exceptionally important, pointing to increased dose of the gene for the amyloid precursor protein (APP) in Down syndrome (DS) and a familial AD (FAD) due to duplication of APP and to mutations in APP and in the genes for Presenilin 1 and 2 (PSEN1, 2), which encode the γ-secretase enzyme that processes APP (Dorszewska et al., 2016). The "tau hypothesis" noted the prominence of tau-related pathology and its correlation with dementia (Kametani and Hasegawa, 2018). Recent interest in induction of microglial activation in the AD brain, as well as other manifestations of inflammation, supports the "inflammatory hypothesis" (Mcgeer et al., 2016). We place these findings in the context of the selective, but by no means unique, involvement of BFCNs and their trophic dependence on NGF signaling and speculate as to how pathogenesis in these neurons is initiated, amplified and ultimately results in their dysfunction and death. In so doing we attempt to show how the

Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice

Neurobiology of Disease, 2006

In 7-month-old TgCRND8 mice, the extracellular cortical acetylcholine levels in vivo, the number and morphology of cholinergic neurons in the nucleus basalis magnocellularis and the ability to acquire an inhibitory avoidance response in the step-down test were studied. The TgCRND8 mouse brain is characterized by many B-amyloid plaques, reduced neuronal and axonal staining, white matter demyelination, glia reaction and inducible nitric oxide synthase immunoreactivity. Choline acetyltransferase immunoreactivity in the nucleus basalis magnocellularis was significantly decreased. Basal and potassium-stimulated extracellular acetylcholine levels, investigated by microdialysis, and m2 muscarinic receptor immunoreactivity were reduced in the cortex of TgCRND8 mice, and scopolamine administration increased cortical extracellular acetylcholine levels in control but not in TgCRND8 mice. A cognitive impairment was demonstrated in the step-down test. These findings demonstrate that neuronal damage and cholinergic dysfunction in vivo underlie the impairment in learning and memory functions in this mouse model of Alzheimer's disease. D