A Conformational Trigger for Activation of a G Protein by a G Protein-Coupled Receptor (original) (raw)
Related papers
Photochemical & Photobiological Sciences, 2004
G protein-coupled receptors (GPCRs) are ubiquitous and essential in modulating virtually all physiological processes. These receptors share a similar structural design consisting of the seven-transmembrane α-helical segments. The active conformations of the receptors are stabilized by an agonist and couple to structurally highly conserved heterotrimeric G proteins. One of the most important unanswered questions is how GPCRs couple to their cognate G proteins. Phototransduction represents an excellent model system for understanding G protein signaling, owing to the high expression of rhodopsin in rod photoreceptors and the multidisciplinary experimental approaches used to study this GPCR. Here, we describe how a G protein (transducin) docks on to an oligomeric GPCR (rhodopsin), revealing structural details of this critical interface in the signal transduction process. This conceptual model takes into account recent structural information on the receptor and G protein, as well as oligomeric states of GPCRs. P h o t o c h e m . P h o t o b i o l . S c i . , 2 0 0 4 , 3, 6 2 8 -6 3 8
Structure, 2012
Photoactivation of rhodopsin (Rho), a G protein-coupled receptor (GPCR), causes conformational changes that provide a specific binding site for the rod G protein, Gt. In this work we employed structural mass spectrometry (MS) techniques to elucidate the structural changes accompanying transition of ground state Rho to photoactivated Rho (Rho*) and in the pentameric complex between dimeric Rho* and heterotrimeric Gt. Observed differences in hydroxyl radical labeling and deuterium uptake between Rho* and the (Rho*) 2-Gt complex suggest that photoactivation causes structural relaxation of Rho following its initial tightening upon Gt coupling. In contrast, nucleotide-free Gt in the complex is significantly more accessible to deuterium uptake allowing it to accept GTP and mediating complex dissociation. Thus, we provide direct evidence that in the critical step of signal amplification, Rho* and Gt exhibit dissimilar conformational changes when they are coupled in the (Rho*) 2-Gt complex.
Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction
PLOS ONE, 2015
GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•G GDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•G GDP. A flexible docking protocol yielded an intermediate R*•G GDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•G empty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•G empty. The observed rotation of α5 by 60°is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.
Conserved activation pathways in G-protein-coupled receptors
Biochemical Society Transactions, 2012
GPCRs (G-protein-coupled receptors) are seven-transmembrane helix proteins that transduce exogenous and endogenous signals to modulate the activity of downstream effectors inside the cell. Despite the relevance of these proteins in human physiology and pharmaceutical research, we only recently started to understand the structural basis of their activation mechanism. In the period 2008-2011, nine active-like structures of GPCRs were solved. Among them, we have determined the structure of light-activated rhodopsin with all the features of the active metarhodopsin-II, which represents so far the most native-like model of an active GPCR. This structure, together with the structures of other inactive, intermediate and active states of rhodopsin constitutes a unique structural framework on which to understand the conserved aspects of the activation mechanism of GPCRs. This mechanism can be summarized as follows: retinal isomerization triggers a series of local structural changes in the binding site that are amplified into three intramolecular activation pathways through TM (transmembrane helix) 5/TM3, TM6 and TM7/TM2. Sequence analysis strongly suggests that these pathways are conserved in other GPCRs. Differential activation of these pathways by ligands could be translated into the stabilization of different active states of the receptor with specific signalling properties.
Biochemistry, 2001
Activation of G-protein coupled receptors (GPCR) is not yet understood. A recent structure showed most of rhodopsin in the ground (not activated) state of the GPCR, but the cytoplasmic face, which couples to the G protein in signal transduction, was not well-defined. We have determined an experimental three-dimensional structure for rhodopsin in the unactivated state, which shows good agreement with the crystal structure in the transmembrane domain. This new structure defines the cytoplasmic face of rhodopsin. The G-protein binding site can be mapped. The same experimental approach yields a preliminary structure of the cytoplasmic face in the activated (metarhodopsin II) receptor. Differences between the two structures suggest how the receptor is activated to couple with transducin.
Structural mechanism of G protein activation by G protein-coupled receptor
European Journal of Pharmacology, 2015
G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate physiology and pathology of various organs. Consequently, about 40% of drugs in the market targets GPCRs. Heterotrimeric G proteins are composed of α, β, and γ subunits, and act as the key downstream signaling molecules of GPCRs. The structural mechanism of G protein activation by GPCRs has been of a great interest, and a number of biochemical and biophysical studies have been performed since the late 80's. These studies investigated the interface between GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. Recently, arrestins are also reported to be important molecular switches in GPCR-mediated signal transduction, and the physiological output of arrestin-mediated signal transduction is different from that of G protein-mediated signal transduction. Understanding the structural mechanism of the activation of G proteins and arrestins would provide fundamental information for the downstream signaling-selective GPCR-targeting drug development. This review will discuss the structural mechanism of GPCR-induced G protein activation by comparing previous biochemical and biophysical studies.
ACS Pharmacology & Translational Science
G protein-coupled receptors (GPCRs) are particularly attractive targets for therapeutic pharmaceuticals. This is because they are involved in almost all facets of physiology, in many pathophysiological processes, they are tractable due to their cell surface location, and can exhibit highly textured pharmacology. While the development of new drugs does not require the molecular details of the mechanism of activity for a particular target, there has been increasing interest in the GPCR field in these details. In part, this has come with the recognition that differential activity at a particular target might be a way in which to leverage drug activity, either through manipulation of efficacy or through differential coupling (signaling bias). To this end, the past few years have seen a number of publications that have specifically attempted to address one or more aspects of the molecular reaction pathway, leading to activation of heterotrimeric G proteins by GPCRs.
Bound conformations for ligands for G-protein coupled receptors
Letters in Peptide Science, 1999
The conformation of the C-terminus of the a-subunit of transducin, the G-protein of vision, has been determined by transfer NOE when bound to activated (MII) rhodopsin. One hundred three new NOE constraints are apparent when light is shown on a mixture of rhodopsin bilayers and the undecapeptide. Analogs of the a-peptide with covalent constraints were designed restricting the bound conformation; they stabilize MII thus supporting the deduced structure. The NMR structure of a complex of the intracellular loops of rhodopsin facilitates docking of the c~-peptide and also shows proximity of residues known by mutational analysis to interact to generate the activated rhodopsin-transducin interface. This constrains the location of transmembrane helices in the structure of activated rhodopsin. Methods for the prediction of affinity have been used to estimate the relative binding constants of peptide analogs with the loop complex and show strong correlation with experimental data. Various models of the rhodopsin-transmembrane helical segments have been computationally fused with distance geometry to determine the overall model which best fits the experimental data on the rhodopsin-transducin interface.
Putative Active States of a Prototypic G-Protein-Coupled Receptor from Biased Molecular Dynamics
Biophysical Journal, 2010
A major current focus of structural work on G-protein-coupled receptors (GPCRs) pertains to the investigation of their active states. However, for virtually all GPCRs, active agonist-bound intermediate states have been difficult to characterize experimentally owing to their higher conformational flexibility, and thus intrinsic instability, as compared to inactive inverse agonist-bound states. In this work, we explored possible activation pathways of the prototypic GPCR bovine rhodopsin by means of biased molecular dynamics simulations. Specifically, we used an explicit atomistic representation of the receptor and its environment, and sampled the conformational transition from the crystal structure of a photoactivated deprotonated state of rhodopsin to the low pH crystal structure of opsin in the presence of 11-trans-retinal, using adiabatic biased molecular dynamics simulations. We then reconstructed the system free-energy landscape along the predetermined transition trajectories using a path collective variable approach based on metadynamics. Our results suggest that the two experimental endpoints of rhodopsin/opsin are connected by at least two different pathways, and that the conformational transition is populated by at least four metastable states of the receptor, characterized by a different amplitude of the outward movement of transmembrane helix 6.