Characterization and remediation of soils contaminated with uranium (original) (raw)
Abstract
Environmental contamination caused by radionuclides, in particular by uranium and its decay products is a serious problem worldwide. The development of nuclear science and technology has led to increasing nuclear waste containing uranium being released and disposed in the environment.
Figures (32)
Fig. 1. Radionuclide transformation processes in soil (kj—reaction rate) [7]. Another problem is the contamination of soil and water with depleted uranium, which has increased public health concerns due to the chemical toxicity of DU at elevated dosages [29-33]. For this reason, there is great interest in developing methods for U removal from contaminated sources.
Average radioactivity of uranium in several types of rocks and soils [46] Table 1
Radioactive characteristics of natural uranium [51] Table 2
Fig. 2. Activities with impact on soil contamination with uranium and uranium compounds [55-60]. Contamination of the soil can occur either from deposition of uranium originally discharged into the atmosphere, or from waste products discharged directly into or on the ground (e.g., water
Normalized uranium effluent discharges from various activities involving uranium [58]
Fig. 3. Eh-pH and uranium species distributions as a function on pH for oxidizing and mildly reducing conditions (adapted upon [88,89].
[
Fig. 6. Calculated uranium speciation in the system UO2-PO4-CO3-OH-H20 at over-saturation at t=25°C [101]. Fig. 4. The effect of pH and concentration of carbon dioxide (log C) on the speciation of uranium in ground water assumed as a closed system [94
Fig. 5. Eh-pH diagram for uranium (0.01-0.5 mg U/L) in dolomitic water (adapted upon [100]).
possibly chloride are potentially important uranyl species where concentrations of these anions are high. However, their stability is considerably less than the carbonate and phosphate complexes [82]. Fig. 7. Eh-pH diagram and uranium speciation in present of sulfates at t=25°C (concentrations of U-ions: 0.01 mg/L; concentrations of sulfate-ions: 0.1 mg/L) [102]. (1) UO}* ; (2) U(SO4)?*; (3) U4*; (4) UO2(SO4)”; (5) U(SO4)$; (6) UO2; (7) UO2(SO)?-; (8) UO2(OH)2H20; (9) U30g; (10) Uso.
Physical characteristics of uranium compounds [61] Table 4 material is transferred from the lungs of animals quite slowly (http://web.ead.anl.gov/uranium/guide/ucompound/health/index. cfm). As was highlighted above, the mobility of uranium in soil is mainly controlled by complexation and redox reactions [78,130,131]:
Basic options for remediations of uranium-contaminated soils [3,133-140]
Fig. 8. Classification of remediation techniques by function [133].
Fig. 9. Remediation alternative evaluation in relation with aims and performance [adapted upon 139-143].
Fig. 10. Estimated operating costs of some available remediation technologies for contaminated soils (http://www.clu-in.org/download/toolkity/metals.pdf). The Eh-pH diagrams (Figs. 3-7) indicate that sorption onto soil can be strongly influenced by the pH of the soil solution and, to a lesser extent, by the presence of calcium, suggesting specific chem- ical interactions between U(VI) and the soil matrix, so that the remediation process will depend on the same factors like those
[
Concentrations dry weight basis and distribution of uranium in soils [149,150 Table 6
Fig. 11. Speciation of uranium depending on CO3?~ concentration (adapted upon [204-206]). Phillips et al. [162] applied a process for concentrating uraniun from contaminated soils in which uranium is first extracted witl bicarbonate and then the extracted uranium is precipitated witl U(VI)-reducing microorganisms. Their results demonstrate tha bicarbonate extraction of uranium from soil followed by microbia U(VI) reduction might be an effective mechanism for concentratins uranium from some contaminated soils.
Selected DU chemical soil extraction methods [197] 4 Values interpolated from publication. Table 7 This stable water-soluble complex forms easily under ambient conditions. Fig. 11 presents the dominating complexes of UO22* as 1 function of [CO3]?~ [206-208].
Table 8
acid as an agent to mobilize and extract uranium from contami- nated soils. Some results indicated that citric acid is highly effective in removing uranium, and that the extraction efficiency increases with increasing citric acid concentration, especially under slightly acidic to alkaline conditions [212,214,215]. Bench scale experiments described by Kulpa and Hughes [197] showed that a certain soil could be treated effectively using a 0.2 M sodium bicarbonate solution at a temperature of approximately 320°C and a retention time of 1.5h and concluded that chemical treatment using carbonate extraction achieved removal efficien- cies of up to 90%. A pilot plant designed to process 2-ton batches of contaminated soil indicated that chemical extraction soil washing would result in contaminant removal efficiencies of approximately 82% and volume reductions of 95% [197].
Fig. 12. Soil washing process simplified flow diagram [195].
Fig. 13. A simplified process flow diagram which illustrates methods of uranium removal in the two-stage leaching procedure [218].
Fig. 14. Pathways for uranium transformation in the presence of enzymes [91].
[
Redox reactions and potentials [275] * Standards redox potentials. > Reduction potential under conditions: PCO2 = 10-3 atm, pH 7.4, DU(VI)(aq) = 10-8 M, Fe?* = 4.5 x 10-5 M, Mn** =3.5 x 10-5 M, Ca?* = 10-15 M. © Reduction potential under experimental conditions: PCO2 = 10-15 atm, pH 7.4, DU(VI)aq) = 10-® M, Fe?* =4.5 x 10-5 M, Mn?* = 3.5 x 10-5 M, Ca?* = 10-35 M. Note that [Ca? is a dependence of PCO2.
Fig. 15. Microbial reduction of U(VI) to U(IV) (adapted upon Ginder-Vogel et al. [292]).
Fig. 16. Eh-pH diagram of U(VI)aq equilibrium with UO2(am) without Ca?* (a) and with calcite (b) (for ZU(VI)aq= 10-8 M, at log PCO2 =—3.5 and log PCO, =—1.5; fo comparisons, the Fe(OH)3/Fe?* (Fe2* = 10-4 M) redox transition is shown as a dotted line) [272].
Fig. 17. Schematic in situ electrokinetic remediation system [349].
Fig. 18. Schematic ex situ electrokinetic remediation system [349].
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (366)
- USEPA, Radionuclides in Soil, RadTown USA, United States Environmental Pro- tection Agency, Office of Radiation and Indoor Air, EPA 402-F-06-051, 2006, On line at: http://www.epa.gov/radtown/docs/soil.pdf.
- P. Cazzola, A. Cena, S. Ghignone, M.C. Abete, S. Andruetto, Experimental sys- tem to displace radioisotopes from upper to deeper soil layers: chemical research, Environ. Health 3 (2004) 5, doi:10.1186/1476-069X-3-5.
- IAEA, Environmental contamination from uranium production facilities and their remediation, in: Proceedings of an International Workshop on Envi- ronmental Contamination from Uranium Production Facilities and Their Remediation organized by The International Atomic Energy Agency in Lisbon, February 11-13, 2004, Vienna, 2005, On line at: http://www- pub.iaea.org/MTCD/publications/PDF/Pub1228 web.pdf.
- P.T. Todorov, E.N. Ilieva, Contamination with uranium from natural and anthropological sources, Rom. J. Phys. 51 (2006) 27-34.
- T.E. Baca, T. Florkowski, The Environmental Challenges of Nuclear Disarma- ment, Springer, 2000.
- IAEA, Extent of environmental contamination by naturally occurring radioac- tive material (norm) and technological options for mitigation, Technical Reports Series No. 419, IAEA, International Atomic Energy Agency, Vienna, 2003.
- J.C. Igwe, I.C. Nnorom, B.C. Gbaruko, Kinetics of radionuclides and heavy met- als behavior in soils: implications for plant growth, Afr. J. Biotechnol. 4 (2005) 1541-1547.
- A.S. Knox, J.C. Seamans, M.J. Mench, J. Vangronseveld, Remediation of Metals and Radionuclides. Contaminated Soil Using In situ Stabilization Techniques, Macmillan Publishers, New York, 2000, pp. 21-26.
- I.K. Iskandar, Restoration of metals contaminated soil, in: Environmental Restoration of Metals Contaminated Soil, Lewis Publishers, 1992, p. 59.
- USEPA, In situ treatment technologies for contaminated soil, United States Environmental Protection Agency Solid Waste and Emergency Response, EPA 542/F-06/013, 2006, On line at: http://www.epa.gov/tio/ tsp/download/542f06013.pdf.
- B.A. Napier, P.R. Reed, Alternative Conceptual Models for Assessing Food Chain Pathways in Biosphere Models, Pacific Northwest National Laboratory, U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research, Wash- ington, DC, 2006.
- The Royal Society, The Health Hazards of Depleted Uranium Munitions, Part I, The Royal Society London, 2001.
- A. Makhijani, B. Smith, M.C. Thorne, Science for the Vulnerable Setting Radia- tion and Multiple Exposure Environmental Health Standards to Protect Those Most at Risk, Institute for Energy and Environmental Research, IEER, Takoma Park, MD, USA, 2006, On line at: http://www.ieer.org/campaign/report.pdf.
- K.B. Gongalsky, Impact of Pollution Caused by Uranium Production on Soil Macrofauna, Environ. Monit. Assess. 89 (2003) 197-219.
- J.D. Navratil, Advances in treatment methods for uranium contaminated soil and water, Arch. Oncol. 9 (2001) 257-260.
- A. Golan-Goldhirsh, Plant tolerance to heavy metals, a risk for food toxicity or a means for food fortification with essential metals: the Allium schoenoprasum model, in: I. Twardowska, H.E. Allen, M.M. Häggblom, S. Stefaniak (Eds.), Soil and Water Pollution Monitoring, Protection and Remediation, NATO Science Series, IV. Earth and Environmental Science, vol. 69, Springer Netherlands, 2006, pp. 479-486.
- D.J. Wilson, A.N. Clarke, Hazardous Waste Site Soil Remediation, CRC Press, 1994.
- IAEA, Manual of Acid In situ Leach Uranium Mining Technology, IAEA- TECDOC-1239, Nuclear Fuel Cycle and Materials Section, IAEA-International Atomic Energy Agency, Vienna, Austria, 2001.
- IAEA, Technologies for the treatment of effluents from uranium mines, mills and tailings, in: Proceedings of a Technical Committee Meeting Held in Vienna, November 1-4, 1999, IAEA-TECDOC-1296, Nuclear Fuel Cycle and Materials Section, IAEA-International Atomic Energy Agency, Vienna, Austria, 2002.
- IAEA, Non-technical Factors Impacting on the Decision Making Processes in Environmental Remediation, IAEA-International Atomic Energy Agency TECDOC-1279, IAEA, Vienna, Austria, 2002.
- S. Groudev, P. Georgiev, I. Spasova, M. Nicolova, Bioremediation of acid mine drainage in an uranium deposit, Adv. Mater. Res. 20-21 (2007) 248-257.
- D.K. Norman, R.L. Raforth, Innovations and trends in reclamation of metal- mine tailings in Washington, Wash. Geol. 26 (1998) 29-42.
- M. Carmen Rivas, Interactions Between Soil Uranium Contamination and Fertilization with N, P and S on the Uranium Content and Uptake of Corn, Sunflower and Beans, and Soil Microbiological Parameters (Special Issue), Landbauforschung Völkenrode-FAL Agricultural Research, Braunschweig, Germany, 2005.
- IAEA, Status and Trends in Spent Fuel Reprocessing, Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency, IAEA-TECDOC- 1467, Vienna, 2005, On line at: http://www-pub.iaea.org/MTCD/publications/ PDF/te 1467 web.pdf.
- M.K. Hill, Understanding Environmental Pollution: A primer, Cambridge Uni- versity Press, 2004.
- V.K. Savchenko, The Ecology of the Chernobyl Catastrophe. Scientific Outlines of An International Programme of Collaborative Research, Man and Biosphere Series, vol. 16, Informa Health Care Publisher, 1996.
- C.K. Gupta, Chemical Metallurgy: Principles and Practice, Wiley-VCH Verlag GmbH&Co, KGaA, Weinheim, 2003.
- M.F. AbdEl-Sabour, Remediation and bioremediation of uranium contam- inated soils, Electron. J. Environ. Agric. Food Chem. (EJEAFChe) 6 (2007) 2009-2023.
- U.S. Congress, Partnerships Under Pressure: Managing Commercial Low-level Radioactive Waste, OTA-O-426, Office of Technology Assessment, Washing- ton, DC, 1989.
- ATSDR, Toxicological Profile for Uranium, Agency for Toxic Substances and Disease Registry, TP-90-29, U.S. Department of Health and Human Services, Atlanta, 1990.
- DOE, A Guide to Risk Assessment and Risk Management for Environmental Protection, Department of the Environment HMSO, London, 1995.
- OECD, Management of Depleted Uranium, OECD Nuclear Energy Agency, International Atomic Energy Agency, 2001.
- US Department of Energy, Depleted UF6 guide. An introduction to uranium and its compounds, depleted uranium, and depleted uranium hexafluoride (depleted UF6) (chapter 4): Environmental Impact Assessment Approach, On line at: http://web.ead.anl.gov/uranium/pdf/chap4.pdf assumptions, and methodology.
- S.N. Groudev, P.S. Georgiev, I.I. Spasova, K. Komnitsas, Bioremediation of a soil contaminated with radioactive elements, Hydrometallurgy 59 (2001) 311-318.
- A. Bleise, P.R. Danesi, W. Burkart, Properties, use and health effects of depleted uranium (DU): a general overview, J. Environ. Radioact. 64 (2003) 93-112.
- Spectrum, Chemical Fact Sheet, Uranium, On line at: http://www.speclab. com/elements/uranium.htm.
- B.S. Hopkins, Chemistry of the Rarer Elements, D.C. Heath and Com- pany, Boston/New York/Chicago/London, 1923, On line at: http://www. sciencemadness.org/library/books/chemistry of the rarer elements.pdf.
- J.D. Appleton, Radon: sources, health risks, and hazard mapping, AMBIO: A J. Hum. Environ. 36 (2007) 85-89.
- P. Stegnar, L. Benedik, Depleted uranium in the environment-an issue of concern? Arch. Oncol. 9 (2001) 251-255.
- M.V. Frontasieva, V.P. Perelygin, P. Vater (Eds.), Radionuclides and Hevy Metals in the Environment, Springer, 2001.
- Periodic Table, A Resource for Elementary, Middle School, and High School Students, Los Alamos National Laboratory's Chemistry Division, 2000, On line at: http://www.bu.edu/ehs/ih/pdf/periodic table.pdf.
- A. Meinrath, P. Schneider, G. Meinrath, Uranium ores and depleted ura- nium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany, J. Environ. Radioact. 64 (2003) 175-193.
- E.R. Graham, Radioisotopes and soils, in: F.E. Bear (Ed.), Chemistry of the Soil, American Chemical Society, Monograph Series, Reinhold Publishing, New York, 1964, pp. 445-473.
- USEPA, Evaluation of EPA's guidelines for technologically enhanced natu- rally occurring radioactive materials, (TENORM), EPA 402-R-00-01, Report to Congress, United States Environmental Protection Agency, 2000, On line at: http://www.epa.gov/radiation/docs/tenorm/402-r-00-001.pdf.
- USEPA, Understanding variation in partition coefficient, K d , val- ues Review of Geochemistry and Available K d Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tri- tium (3H), and Uranium, vol. II, U.S. Environmental Protection Agency, Office of Radiation and Indoor Air, Washington, DC, 1999, On line at: http://www.epa.gov/radiation/docs/kdreport/vol2/402-r-99-004b.pdf.
- NCRP, Exposures from the uranium series with emphasis on radon and its daughter, NCRP Report No. 77, National Council on Radiation Protection and Measurements, Bethesda, MD, 1984.
- H.E. Stokinger, Uranium, U, in: C.D. Clayton, F.E. Clayton (Eds.), Industrial Hygiene and Toxicology, vol. 2A, 3rd ed., John Wiley & Sons, New York, NY, 1981, pp. 1995-2013.
- C. Frondel, Systematic mineralogy of uranium and thorium, U.S. Geol. Surv. Bull (1958) 1064.
- USEPA, Use of monitored natural attenuation at superfund, RCRA corrective action and underground storage tank sites, OSWER Directive Number 9200.4- 17P, Office of Solid Waste and Emergency Response, Washington, DC, 1999.
- G. Jia, M. Belli, U. Sansone, S. Rosamilia, S. Gaudino, Concentration, distribu- tion and characteristics of depleted uranium (DU) in the Kosovo ecosystem: a comparison with the uranium behavior in the environment uncontaminated by DU, J. Radioanal. Nucl. Chem. 260 (2004) 481-494.
- M. Eisenbud, T. Gesell, Environmental Radioactivity from Natural, Industrial, and Millitary Sources, 4th ed., Academic Press, 1997.
- I.M. Fisenne, USDOE remediation site case study, Environ. Int. 22 (Suppl. 1) (1996) S243-S249.
- M. Keller, B. Anet, M. Burger, E. Schmid, A. Wicki, Ch. Wirz, Environmental and Health Effects of Depleted Uranium, Directorate General for Research of the European Parliament Spiez Laboratory, Switzerland, 2001, On line at: http://www.labor-spiez.ch/old/e/bg info/du/du study print.pdf.
- J.D. Wall, L.R. Krumholz, Uranium reduction, Ann. Rev. Microbiol. 60 (2006) 149-166.
- I. Cretescu, I. Antonescu, Radiochemistry, Gh. Asachi Publishing House, Iasi, Romania, 1998.
- USEPA, Environmental radiation data report, U.S. Environmental Protection Agency, National Air and Radiation Environmental Laboratory Report, EPA 402-R-93-093, 1994.
- J.P. Bibler, D.B. Marson, Behavior of mercury, lead, cesium, and uranyl ions on four SRS soils (U), Technical Report, Westinghouse Savannah River Company Savannah River Site, WSR-RP-92-326, 1992, On line at: http://www.osti.gov/energycitations/servlets/purl/7064035-hwmdrD/ 7064035.PDF.
- UNSCEAR, Ionizing Radiation: Sources and Biological Effects, United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations Doc- ument E.82.IX.8, New York, 1982.
- J.H.E. Stelling, Source category survey: uranium refining industry, Report, EPA- 450/3-80-010, NITS PB80-192867, Washington, DC, 1980.
- MMES, Paducah gaseous diffusion plant: environmental monitoring report, Report ISS KY-747, DE85014027, United States Department of Energy, 1985.
- DOE, Characteristics of Uranium and Its Compounds, Depleted Uranium Hex- afluoride Fact Sheet, U.S. Department of Energy Office of Environmental Man- agement Depleted Uranium Hexafluoride Management Program, 2001, On line at: http://web.ead.anl.gov/uranium/pdf/UraniumCharacteristicsFS.PDF.
- D. Strahan, Uranium in glass, glazes and enamels: history, identification and handling, Stud. Conserv. 46 (2001) 181-195.
- S.C. Sheppard, M.I. Sheppard, M.-O. Gallerand, B. Sanipelli, Derivation of eco- toxicity thresholds for uranium, J. Environ. Radioact. 79 (2005) 55-83.
- G. Munroe, Health effects of depleted uranium, 2004, On line at: http://www.miltoxproj.org.
- J.L. Domingo, Reproductive and developmental toxicity of natural and depleted uranium: a review, Reprod. Toxicol. 15 (2001) 603-609.
- A. Auvinen, P. Kurttio, J. Pekkanen, E. Pukkala, T. Ilus, L. Salonen, Ura- nium and other natural radionuclides in drinking water and risk of leukemia: a case-cohort study in Finland, Cancer Causes Control 13 (2002) 825-829.
- A.W. Abu-Qare, M.B. Abou-Donia, Depleted uranium-the growing concern, J. Appl. Toxicol. 22 (2002) 149-152.
- E.I. Hamilton, Depleted uranium (DU): a holistic consideration of DU and related matters, Sci. Total Environ. 17 (2001) 5-21.
- N. Priest, Toxicity of depleted uranium, The Lancet 357 (2001) 244-246.
- L.J. Leach, E.A. Maynard, H.C. Hodge, J.K. Scott, C.L. Yuile, G.E. Sylvester, H.B. Wilson, A five-year inhalation study with natural uranium dioxide (UO2) dust.
- I. Retention and biologic effect in the monkey, dog and rat, Health Phys. 18 (1970) 599-612.
- E. Ansoborlo, V. Chazel, M.H. Henge-Napoli, P. Pihet, A. Rannou, M.R. Bailey, N. Stradling, Determination of the physical and chemical properties, biokinetics, and dose coefficients of uranium compounds handled during nuclear fuel fabrication in France, Health Phys. 82 (2002) 279-289.
- P. Zhou, B. Gu, Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH, Environ. Sci. Technol. 39 (2005) 4435-4440.
- OECD, Chemical Thermodynamics of Uranium, Nuclear Energy Agency Orga- nization for Economic Co-Operation and Development, Paris, 2004.
- P.M. Bertsch, D.B. Hunter, In situ chemical speciation of uranium in soils and sediments by micro X-ray absorption spectroscopy, Environ. Sci. Technol. 28 (1994) 980-984.
- Y. Roh, S.R. Lee, S.-K. Choi, M.P. Elless, S.Y. Lee, Physicochemical and mineralog- ical characterization of uranium-contaminated soils, Soil Sediment Contam. 9 (2000) 463-486.
- R. Vochten, E. De Gravel, H. Lauwers, Transformation of synthetic U3O8 into different uranium oxide hydrates, Mineral. Petrol. 41 (1990) 247-255.
- B. Allard, U. Olofsson, B. Torstenfelt, H. Kipasti, K. Andersson, Sorption of actinides in well-defined oxidation states on geologic media, Mater. Res. Soc. Symp. Proc. 11 (1982) (1982) 775-782.
- D. Langmuir, Uranium solution-mineral equilibria at low temperature with applications to sedimentary ore-deposits, Geochim. Cosmochim. Acta 42 (1978) 547-569.
- M.D. Campbell, K.T. Biddle, Frontier areas and exploration techniques. Frontier uranium exploration in the South-Central United States, in: M.D. Campbell (Ed.), Geology of Alternate Energy Resources, Houston Geological Society, Houston, TX, 1977, pp. 3-44.
- L. Ciavatta, D. Ferri, I. Grenthe, F. Salvatore, The first acidification step of the tris(carbonato)dioxourantantate(VI) ion, UO2(CO3)3 4-, J. Inorg. Chem. 20 (1981) 463-467.
- M.C. Duff, C. Amrhein, Uranium(VI) adsorption on geothite and soil in soil carbonate solutions, Soil Sci. Soc. Am. J. 60 (1996) 1393-1400.
- I. Grenthe, J. Fuger, R. Konings, R.J. Lemire, A.B. Muller, C. Nguyen-Trung, J. Wanner, The Chemical Thermodynamics of Uranium, Elsevier, New York, 1992.
- A. Sandino, J. Bruno, The solubility of (UO2)3(PO4)2•4H2O(s) and the forma- tion of U(VI) phosphate complexes: their influence in uranium speciation in natural waters, Geochim. Cosmochim. Acta 56 (1992) 4135-4145.
- D.E. Robertson, D.A. Cataldo, B.A. Napier, K.M. Krupka, L.B. Sasser, Literature Review and Assessment of Plant and Animal Transfer Fac- tors Used in Performance, NUREG/CR-6825 PNNL-14321, Assessment Modeling, Pacific Northwest National Laboratory, U.S. Nuclear Regu- latory Commission Office of Nuclear Regulatory Research, Washing- ton, 2003, On line at: http://www.nrc.gov/reading-rm/doc-collections/ nuregs/contract/cr6825/cr6825.pdf.
- M. Dozol, R. Hagemann, Radionuclide migration in groundwaters, review of the behaviour of actinides, Pure Appl. Chem. 65 (1993) 1081-1102.
- A. Roine, K. Anttila, Eh-pH-DIAGRAMS (Pourbaix-diagrams), HSC Chemistry 6.0, 06120-ORC-T, August 10, 2006.
- G. Meinrath, A review focusing on aspects of environmental chemistry, Freiberg On-line, Geoscience 1, 1998, On line at: http://www.geo.tu- freiberg.de/fog/FOG Vol 1.pdf.
- A. Ikeda, C. Hennig, S. Tsushima, K. Takao, Y. Ikeda, A.C. Scheinost, G. Bern- hard, A comparative study of U(VI) and U(V) carbonato complexes in aqueous solution, Inorg. Chem. 46 (2007) 4212-4219.
- I. Puigdomenech, Hydra/Medusa Chemical Equilibrium Database and Plotting Software, KTH Royal Institute of Technology, Stockholm, Sweden, 2004.
- T.D. Waite, J.A. Davis, T.E. Payne, G.A. Waychunas, N. Xu, Uranium(VI) adsorp- tion to ferrihydrite. Application of a surface complexation model, Geochim. Cosmochim. Acta 58 (1994) 5465-5478.
- R.T. Pabalan, D.R. Turne, Uranium (6+) sorption on montmorillonite: experi- mental and surface complexation modeling study, Aquat. Geochem. 2 (1997) 203-226.
- R.T. Pabalan, D.R. Turner, F.P. Nertetti, J.D. Prikryl, Uranium(VI) sorption onto selected mineral surfaces, key geochemical parameters, in: E.A. Jenne (Ed.), Adsorption of Metals, Geomedia, Academic Press, San Diego, CA, 1998.
- R.A. Fjeld, J.T. Coates, A.W. Elzerman, Column tests to study the transport of plutonium and other radionuclides in sedimentary interbed at INEEL, Final Report Submitted to the Idaho National Engineering and Environmental Lab- oratory, Idaho Falls, 2000.
- C. Papelis, K.F. Hayes, J.O. Leckie, HYDRAQL: a program for the computation of chemical equilibrium composition of aqueous batch systems, Technical Report No. 306, Department of Civil Engineering, Stanford University, Stan- ford, CA, 1988.
- H. Ervanne, Oxidation state analyses of uranium with emphasis on chemical speciation in geological media, Thesis, University of Helsinki, 2004.
- B. Allard, S.Å. Larson, E.-L.Tullborg, P. Wikberg, SKB Technical Report TR-83-59, Swedish Nuclear Fuel and Waste Management Co., Stockholm, 1983.
- K.H. Lieser, R. Hill, Hydrolysis and colloid formation of thorium in water and consequences for its migration behaviour-comparison with uranium, Radiochim. Acta 56 (1992) 37-45.
- H. Coetze, F. Winde, P.W. Wade, An assessment of sources, path- ways, mechanisms and risks of current and potential future pollution of water and sediments in gold-mining areas of the wonderfontein- spruit catchment, Report to the Water Research Commission, WRC Report No. 1214/1/06, Pretoria, 2006, On line at: http://www.wrc.org.za/ downloads/report%20lists/web%20rpts/mine/1214-1-06.pdf.
- F. Winde, Uranium contamination of fluvial systems-mechanisms and pro- cesses, Part III, Cuadernos de Investigacion Geografica 28 (2002) 75-100.
- P.W. Wade, S. Woodbourne, W.M. Morris, P. Vos, N.V. Jarvis, Tier 1 risk assess- ment of radionuclides in selected sediments of the Mooi River, WRC-Project No. K5/1095, Pretoria Water Research Commission, 2000.
- V. Brendler, G. Geipel, G. Bernhard, H. Nitsche, Possible impacts of phos- phate influx on the uranium speciation and migration in seepage waters, in: B. Merkel, S. Hurst, E.P. Löhnert, W. Struckmeier (Eds.), Proceedings of the International Conference Workshop on Uranium Mining and Hydrogeology, October 1995, Freiberg, Verlag Sven v. Loga, Köln, 1995, p. 61.
- D.C. Gupta, H. Singh, Uranium resource procecessing: secondary resources, developments in uranium resources, production, demand and the environ- ment, in: Proceedings of a Technical Committee Meeting Held in Vienna, June 15-18, 1999, IAEA-TECDOC-1425, January, 2005.
- J.J. Kim, Chemical behavior of transuranic elements in aquatic systems, in: A.J. Freeman, C. Keller (Eds.), Handbook on the Physics and Chemistry of the Actinides, Elsevier Science Publishers, Amsterdam, 1986, pp. 413- 455.
- K. Andersson, Possible complex formation of actinides with organic mat- ter and phosphate in deep groundwaters. Speciation calculations and data evaluation, Mater. Res. Soc. Symp. Proc. 127 (1989) 693-700.
- S. Boggs Jr., D. Livermore, M.G. Seitz, Humics substances in natural waters and their complexation with trace metals and radionuclides, Report, ANL-84-78, Argonne National Laboratory, Argonne, IL, 1985.
- R. Finch, T. Murakami, Systematics and paragenesis of uranium minerals, in: P.C. Burns, R. Finch (Eds.), Uranium: Mineralogy, Geochemistry and the Envi- ronment. Reviews in Mineralogy, vol. 38, Mineralogical Society of America, Washington, DC, 1999, pp. 91-179.
- Falck, W.E., Critical evaluation of the CHEMVAL thermodynamic database with respect to its contents and relevance to radioactive waste disposal at sell- afield and dounreay, CHEMVAL Project, DOE/HMIP/RR/92.064, Department of Environment, London, 1991.
- M. Palacios, L. Taylor, H. Stuart, Characterization of uranium oxides using in situ micro-Raman spectroscopy, Appl. Spectrosc. 54 (2000) 1372-1378.
- DUF6 (a), Uranium hexafluoride (UF6). Physical and chemical properties of UF6, and its use in uranium processing. Uranium hexafluoride and its proper- ties, On line at: http://web.ead.anl.gov/uranium/guide/uf6/index.cfm.
- I.V. Tananaev, N.S. Nikolaev, Y.A. Lukyanychev, A.A. Opalovskii, The chemistry of uranium fluorides, Russ. Chem. Rev. 30 (1961) 654-671.
- USEPA, NPL site narrative for nuclear metals, 2001, On line at: http://www.epa.gov/superfund/sites/npl/nar1605.htm.
- R. Bertell, Gulf war veterans and depleted uranium, in: Hague Peace Confer- ence, 1999, On line at: http://www.ccnr.org/du hague.html.
- S. Richter, A. Alonso, R. Wellum, P.D.P. Taylor, The isotopic composition of commercially available uranium chemical reagents, J. Anal. At. Spectrom. 14 (1999) 889-891.
- DUF6, Chemical forms of uranium. Descriptions of common uranium compounds, On line at: http://web.ead.anl.gov/uranium/guide/ucompound/ forms/index.cfm.
- V. Vallet, I. Grenthe, On the structure and relative stability of uranyl(VI) sulfate complexes in solution, C. R. Chim. 10 (2007) 905-915.
- P. Vitorage, V. Phrommavanh, B. Siboulet, D. You, T. Vercouter, M. Descostes, C.J. Marsden, C. Beaucaire, J.-P. Gaudet, Estimating the stabilities of actinide aqueous species. Influence of sulfoxy-anions on uranium(IV) geochem- istry and discussion of Pa(V) first hydrolysis, C. R. Chim. 10 (2007) 978/993.
- C.S. Barton, D.I. Stewart, K. Morris, D.E. Bryant, Performance of three resin- based materials for treating uranium-contaminated groundwater within a PRB, J. Hazard. Mater. B116 (2004) 191-204.
- D.K. Craig, Chemical and Radiological Toxicity of Uranium and its Compounds, Report WSRC-TR-2001-00331, Contract No. DE-AC09-96SR18500, Westing- house Savannah River Company, Aiken/U.S. Department of Energy, 2001.
- J.E. Gindler, Physical and chemical properties of uranium, in: H.C. Hodge, J.N. Stannard, J.B. Hursh (Eds.), Uranium, Plutonium and Transplutonic Elements, Springer Verlag, New York/Heidelberg-Berlin, 1973, pp. 69-164.
- A. Tannenbaum, Toxicology of Uranium, McGraw-Hill, New York, 1951.
- C. Voetglin, H.C. Hodge, The Pharmacology and Toxicology of Uranium Com- pounds, McGraw-Hill, New York, 1949.
- B. Jacobs, Toxicity Profiles for Selected Chemicals for the Reindustri- alization Program, Science Applications International Corporation, Oak Ridge, TN, USA, 2001, On line at: http://www.ettpreuse.com/riskfacts/ Tox Profiles 050801.pdf.
- A. Durakoviae, Medical effects of internal contamination with uranium, Croat. Med. J. 40 (1999) 49-66.
- N.H. Harley, E.C. Foulkes, L.H. Hilborne, A. Hudson, C.R. Anthony, A Review of the Scientific Literature as it Pertains to Gulf War Illness, National Defense Research Institute 7, MR-1018/7-OSD, Rand, 1999.
- C.C. Choy, G.P. Korfiatis, X. Meng, Removal of depleted uranium from contam- inated soils, J. Hazard. Mater. 136 (2006) 53-60.
- USEPA, Rules of Thumb for Superfund Remedy Selection, Rep. EPA 540-R-97- 013, USEPA-United States Environmental Protection Agency, Washington, DC, 1997.
- USEPA, Abstracts of Remediation Case Studies, vol. 4, Federal Reme- diation Technologies Roundtable, EPA 542-R-00-006, 2000, On line at: http://www.epa.gov/tio/download/frtr/abstractsvol4.pdf.
- C. Baird, M. Cann, Environmental Chemistry, 3rd ed., University of Western Ontario, 2005.
- G. Brümmer, J. Gerth, U. Herms, Heavy metal species, mobility and availability in soils, Z. Pflanzenernaehr. Bodenkd. 149 (1986) 382-398.
- D. Wronkiewicz, E. Buck, Uranium mineralogy and the geologic disposal of spent nuclear fuel, in: P.C. Burns, R. Finch (Eds.), Uranium: Mineralogy, Geo- chemistry and the Environment. Reviews in Mineralogy, vol. 38, Mineralogical Society of America, Washington, DC, 1999, pp. 475-497.
- Y. Suzuki, T. Suko, Geomicrobiological factors that control uranium mobil- ity in the environment: update on recent advances in the bioremediation of uranium-contaminated sites, J. Mineral. Petrol. Sci. 101 (2006) 299-307.
- S.S. Suthersan, F.C. Payne, In Situ Remediation Engineering, CRC Press, 2005.
- R. Johnson, K.P. Smith, J. Quinn, The Application of Adaptive Sampling and Analysis Program (ASAP) Techniques to NORM Sites, Rep. DOE/BC/W-31-109- ENG-38-9, OSTI No. 14169, United States Department of Energy, Washington, DC, 1999.
- IAEA, Remediation of sites with dispersed radioactive contamination, Technical Report Seies No. 424, IAEA-International Atomic Energy Agency, Viena, Austria, 2004, On line at: http://www-pub.iaea.org/ MTCD/publications/PDF/TRS424 web.pdf.
- IAEA, Applicability of monitored natural attenuation at radioactively contaminated sites, Technical Report Series No. 445, IAEA-International Atomic Energy Agency, Viena, Austria, 2006, On line at: http://www- pub.iaea.org/MTCD/publications/PDF/TRS445 web.pdf.
- NAP, Ranking Hazardous-waste Sites for Remedial Action, Committee on Remedial Action Priorities for Hazardous Waste Sites, Board on Environmen- tal Studies and Toxicology, Commission on Geosciences, Environment, and Resources, National Research Council, National Academy Press, Washington, DC, 1994.
- EURODEMO, European platform for demonstration of efficient soil and groundwater remediation, Project no. (GOCE) 003985-FP6, 2005, On line at: http://www.eurodemo.info.
- C.V.F. Mason, W.R.J.R. Turney, B.M. Thomson, N. Lu, P.A. Longmire, C.J. Chrisholm-Brause, Carbonate leaching of uranium from contaminated soils, Environ. Sci. Technol. 31 (1997) 2707-2711.
- M. Gavrilescu, Fate of pesticides in the environment and its bioremediation, Eng. Life Sci. 5 (2005) 497-526.
- V.M. Ibeanusi, D.A. Grab, L. Jensen, S. Ostrodka, Radionuclide Biological Reme- diation Resource Guide, EPA 905-B-04-001, United States Environmental Protection Agency, Region 5, Superfund Division, Chicago, IL, 2004, On line at: http://clu-in.org/download/remed/905b04001.pdf.
- F.I. Khan, T. Husain, R. Hejazi, An overview and analysis of site remediation technologies, J. Environ. Manage. 71 (2004) 95-122.
- D.S. Burden, J.L. Sims, Fundamentals of Soil Science as Applicable to Man- agement of Hazardous Wastes, Technology Innovation Office, Office of Solid Waste and Emergency Response, US EPA, Washington, DC, 1999.
- University of Georgia, New Soil Remediation Techniques Emphasize "Cheaper, Smarter and Cleaner" Philosophy, Savannah River Ecology Laboratory News Release, 1995, On line at: http://www.uga.edu/srel/soil.htm.
- K.R. Reddy, J.A. Adams, C. Richardson, Potential technologies for remediation of brownfields, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 3 (1999) 61-68.
- R.A. Olexsey, R.A. Parker, Current and future in situ treatment techniques for the remediation of hazardous substances in soil, sediments, and groundwa- ter, in: I. Twardowska, H.E. Allen, M.M. Häggblom, S. Stefaniak (Eds.), Soil and Water Pollution Monitoring, Protection and Remediation, NATO Science Series, IV. Earth and Environmental Science, vol. 69, Springer, Netherlands, 2006, pp. 211-219.
- M. Gavrilescu, Overview of in situ remediation technologies for sites and groundwater, Environ. Eng. Manage. J. 5 (2006) 79-114.
- FRTR, Remediation Technologies Screening Matrix and Reference Guide, Ver- sion 4.0, On line at: http://ww.frtr.gov.
- H. Shahandeh, L.R. Hossner, Role of soil properties in phytoaccumulation of uranium, water, Air Soil Pollut. 141 (2002) 165-180.
- M.L. Jackson, Soil Chemical Analysis-Advanced Course, Department of Soil Science, University of Wisconsin, Madison, 1985.
- S.Y. Lee, J.D. Marsh, Characterization of Uranium Contaminated Soil from DOE Fernald Environmental Management Project Site: Results of Phase I Charac- terization, ORNLRTM-11980, Oak Ridge National Laboratory, Oak Ridge, TN, 1992.
- F. Gadelle, J.M. Wan, T.K. Tokunaga, Removal of uranium(VI) from contami- nated sediments by surfactants, J. Environ. Qual. 30 (2001) 470-478.
- R.N. Yong, C.N. Mulligan, Natural Attenuation of Contaminated Soils, CRC Press, 2003.
- W.D. Burgos, J.M. Senko, B.A. Dempsey, E.E. Roden, J.J. Stone, K.M. Kemner, S.D. Kelly, Soil humic acid decreases biological uranium(VI) reduction by She- wanella putrefaciens CN32, Environ. Eng. Sci. 24 (2007) 755-761.
- H. Shahandeh, L.R. Hossner, Enhancement of uranium phytoaccumulation from contaminated soils, Soil Sci. 167 (2002) 269-280.
- A. Manceau, L. Charlet, M.C. Boisset, B. Didier, L. Spadini, Sorption and spe- ciation of heavy metals on hydrous Fe and Mn oxides. From microscopic to macroscopic, Appl. Clay Sci. 7 (1992) 201-223.
- J.M. Zachara, J.P. McKinley, Influence of hydrolysis on the sorption of metal cations by smectites: importance of edge coordination reactions, Aquat. Sci. 55 (1993) 250-261.
- V.S. Tripathi, Uranium transport modeling: geochemical data and submodels, Ph.D. Thesis, Stanford University, Palo Alto, CA, 1983.
- C.-K.D. Hsi, D. Langmuir, Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation side-binding model, Geochim. Cos- mochim. Acta 49 (1985) 1931-1941.
- T.E. Payne, T.D. Waite, Surface complexation modeling of uranium sorption obtained by isotope exchange techniques, Radiochim. Acta 52-53 (1991) 487-493.
- J.R. Bargar, R. Reitmeyer, J.A. Davis, Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite, Environ. Sci. Technol. 33 (1999) 2481-2484.
- J.R. Bargar, R. Reitmeyer, J.J. Lenhart, J.A. Davis, Characterization of u(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements, Geochim. Cosmochim. Acta 64 (2000) 2737-2749.
- E.J.P. Phillips, E.R. Landa, D.R. Lovley, Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction, J. Ind. Micro- biol. 14 (1995) 203-207.
- A.J. Francis, C.J. Dodge, Remediation of soils and wastes contaminated with uranium and toxic metals, Environ. Sci. Technol. 32 (1998) 3993-3998.
- I. Nirdosh, Leaching of uranium and 226-Ra from low-level radioactive waste from Port Hope, Ontario, Can. J. Chem. Eng. 77 (1999) 508-514.
- C.N. Mulligan, R.N. Yong, Natural attenuation of contaminated soils, Environ. Int. 30 (2004) 587-601.
- P.V. Brady, M.V. Brady, D.J. Borus, Natural Attenuation: CERCLA, RBCA's, and Future Environmental Remediation, CRC Press, 2003.
- K.M. Krupka, W.J. Martin, Subsurface contaminant focus area: moni- tored natural attenuation (MNA)-programmatic, technical, and regulatory issues, Pacific Northwest National Laboratory, Report PNNL-13569, Con- tract DE-AC06-76RL01830 with U.S. Department of Energy, 2001, On line at: http://www.pnl.gov/main/publications/external/technical reports/PNNL- 13569.pdf.
- USEPA, Use of monitored natural attenuation superfund, RCRA corrective action, underground storage tank sites, OSWER Directive 9200.4-17, 1997, On line at: http://mmr.org/Cleanup/tech/oswer.htm#6.
- ADEC, Alaska Department of Environmental Conservation, Guidance on the selection of natural attenuation as a cleanup alternative for the restora- tion of soil and ground water at contaminated sites, 2000, On line at: http://dec.alaska.gov/spar/csp/guidance/nat doc.pdf.
- P. Brady, B.P. Spalding, K.M. Krupa, R.D. Waters, P. Zhang, D.J. Borns, W.D. Brady, Site screening and technical guidance for monitored natural attenuation at DOE sites, Sandia National Laboratories Report, SAND99-0464, Albuquerque, USA, 1999.
- SNL, Sandia Scientists Study 'Natural' Alternative to Cleaning up Uranium- Contaminated Sites, Sandia National Laboratory, Albuquerque, 2000, On line at: http://www.sandia.gov/media/NewsRel/NR2000/uranium.htm.
- A. Abdelouas, W. Lutze, E. Nuttall, Chemical reactions of uranium in ground- water at a mill tailings site, J. Contam. Hydrol. 34 (1998) 343-436.
- A. Abdelouas, W. Lutze, W. Gong, E.H. Nuttall, B.A. Strietelmeier, B.J. Travis, Biological reduction of uranium in groundwater and subsurface soil, Sci. Total. Environ. 250 (2000) 21-35.
- J.R. Lawrence, G.D.W. Swerhone, Y.T.J. Kwong, Natural attenuation of aqueous metal contamination by an algal mat, Can. J. Microbiol. 44 (1998) 825-832.
- E.V. Firsova, K.E. German, V.F. Peretroukhin, T.V. Khijnyak, Bioaccumulation of long-lived radionuclides by fresh-water silt, environmental contamination in central and eastern Europe, in: Proceedings of the 4th International Sym- posium, Warsaw, Institute for International Cooperative and Environmental Research, Tallahassee, FL, USA, 1998.
- D. Read, W.E. Falck, Long-term uranium migration behaviour: an overview of the 'natural analogue' studies carried out on the British Isles, Uranium Mining and Hydrogeology, in: Proceedings of the International Symposium, Freiberg, Sven von Loga, Cologne, 1995, pp. 473-482.
- C. Burroughs, Sandia scientists study 'natural' alternative to cleaning up uranium-contaminated sites. Natural attenuation may replace costly tra- ditional remediation techniques, Sandia Lab News 52 (2000), On line at: http://www.sandia.gov/LabNews/LN03-10-00/uranium story.html.
- USEPA, Technology Reference Guide for Radiologically Contaminated Surfaces, EPA-402-R-06-003, United States Environmental Protection Agency Office of Air and Radiation, Washington, DC, 2006, On line at: http://www.epa.gov/rpdweb00/docs/cleanup/402-r-06-003.pdf.
- B.E. Rittmann, Definition, objectives, and evaluation of natural attenuation, Biodegradation 15 (2004) 349-357.
- M.N. Sara, Site Assessment and Remediation Handbook, CRC Press, 2003.
- M.N. Nielsen, A. Winding, Microorganisms as indicators of soil health, NERI Technical Report No. 388, National Environmental Research Institute, Copen- hagen, Denmark, 2002.
- M. Manaka, Y. Seki, K. Okuzawa, H. Kamioka, Y. Watanabe, Natural attenuation of dissolved uranium within a small stream of central Japan, Limnology 8 (2007) 143-153.
- C.F.V. Mason, N. Lu, W.R.J.R. Turney, M. Williams, A complete remediation sys- tem for uranium-contaminated soils: application to a uranium-contaminated site at Los Alamos National Laboratory, Rem. J. 8 (2007) 113-126.
- I. Datskou, J. Hutchison, S. Ince, Estimation of secondary waste loads generated during environmental restoration activities, J. Hazard. Mater. 51 (1996) 35- 45.
- O. Bayakara, H. Hasar, E. Öbek, M. Dogru, Determination of radioactive pollu- tion from an open landfill, J. Radioanal. Nucl. Chem. 265 (2005) 95-99.
- W.L. Neal, J.M. Obereiner, Results and evaluation of radiochemical sampling at six waste management Inc. California landfills, GeoChem Applications, Geochemical and Statistical Data Analysis, El Dorado Hills, CA, 2003, On line at: http://apps.em.doe.gov/ETEC/Cleanup/Documents/WasteManagement/ RadiochemistryFinal.pdf.
- G.L.M. Leonia, M.S.S. Almeid, H.M. Fernandes, Computational modelling of final covers for uranium mill tailings impoundments, J. Hazard. Mater. 110 (2004) 139-149.
- DOE, Worker health risk evaluation methodology for assessing risks associ- ated with environmental restoration and waste management, Report, Center for Risk Management, Oak Ridge, USA, 1995.
- USEPA, Final covers on hazardous waste landfills and surface impoundments, Report No. EPA/530-SW-89-04, NTIS PB 89-233480, Risk Reduction Engineer- ing Laboratory, Cincinnati, OH, 2004.
- USEPA, Survey of materials-handling technologies used at hazardous waste sites, Report No. EPA/540/2-91/010, NTIS PB 91-921283, Risk Reduction Engi- neering Laboratory, Cincinnati, OH.
- OHCB, Position Paper on Capping Waste Sites Located on the Hanford Nuclear Site, Oregon Department of Energy's Nuclear Safety Division, Oregon Hanford Cleanup Board, U.S. Department of Energy, 2005.
- V. Absolon, P.J. Bartsch, C. Bazeley, G. Jobling, P. Bush, K.F. Bamp- ton, Honeymoon uranium project south Australia, summary of feasibility study, Project No. MI7232, 2006, Mayfield Engineering Pty Ltd., Ade- laide, Australia, 2006, On line at: http://www.uranium1.com/uploads/filing/ Honeymoon%20Technical%20REport.pdf.
- E.D. Goller, J.G. Field, R.D. Belden, R.J. Serne, S.V. Mattigod, H.D. Freeman, R.W. Scheck, 100 area hanford soil washing treatability tests, in: ER '93- Environmental Remediation Conference, October 24-28, 1993, Augusta, Geor- gia, 1993, On line at: http://www.osti.gov/bridge/servlets/purl/10190693- zHhWZ7/native/10190693.pdf.
- J.R. Lloyd, D.R. Lovley, Microbial detoxification of metals and radionuclides, Curr. Opin. Biotechnol. 12 (2005) 248-253.
- Ch.W. Francis, M.E. Timpson, S.Y. Lee, M.P. Elless, J.H. Wilson, The use of car- bonate lixiviants to remove uranium from uranium-contaminated soils, J. Radioanal. Nucl. Chem. 228 (1998) 15-21.
- T.L. Jones, A. Ghassemi, D.L. Wise, D.J. Trantolo, Modern in-field process systems-case study: soil washing. Remediation of hazardous waste contam- inated soils, Environ. Sci. Pollut. Control Ser. 8 (1994) 719-743.
- J.P. Kulpa, J.E. Hughes, Deployment of chemical extraction soil treat- ment on uranium contaminated soil, in: WM'01 Conference, February 25-March 1, 2001, Tucson, AZ, 2001, On line at: http://www.wmsym. org/Abstracts/2001/54/54-5.pdf.
- S.D. Ebbs, W.A. Norvell, L.V. Kochian, The effect of acidification and chelating agents on the solubilization of uranium from contaminated soil, J. Environ. Qual. 27 (1998) 1486-1494.
- M.E. Timpson, M.P. Elless, C.W. Francis, Influence of attrition scrub- bing, ultrasonic treatment, and oxidant additions on uranium removal from contaminated soils, in: Conference: Waste Management 94: Work- ing Towards a Cleaner Environment, February 27-March 3, 1994, Tucson, AZ, United States, 1994, On line at: http://www.osti.gov/energycitations/ servlets/purl/10158121-DOwgyB/native/10158121.PDF.
- I. Yousfi, J. Bole, O. Geiss, Chemical extractions applied to the determination of radium speciation in uranium mill tailing: study of different reagents, J. Radioanal. Nucl. Chem. 240 (1999) 835-840.
- J.-C. Chao, P.-T. Hong, R.W. Okey, R.W. Peters, Selection of chelating agents for remediation of radionuclide contaminated soil, in: Proceedings of the 1998 Conference on Hazardous Waste Research, Bridging Gaps in Technology and Culture, May, 1998, Snowbird, Utah, 1998, pp. 18-21, 142-160.
- W. Stumm, J.J. Morgan, Aquatic Chemistry, 3rd ed., John Wiley & Sons Inc., New York, 1996, pp. 252-424.
- M.H. Hengé-Napoli, E. Ansoborlo, P. Houpert, H. Mirto, F. Paquet, R. Burgada, S. Hodgson, G.N. Stradling, Progress and trends in in vivo chelation of uranium, Radiat. Prot. Dosim. 79 (1998) 449-452.
- S. Fukuda, Chelating agents used for plutonium and uranium removal in radi- ation emergency medicine, Curr. Med. Chem. 12 (2005) 2765-2770.
- A. Hong, T.C. Chen, E. Macauley, Selection and test of effective chelators for removal of heavy metals from contaminated soils, Can. J. Civil Eng. 22 (1995) 1185-1197.
- M.M. Hossain, Effects of HCO3 -and ionic strength on the oxidation and dis- solution of UO2, Thesis, School of Chemical Science and Engineering Nuclear Chemistry Royal Institute of Technology Stockholm, Sweden, 2006.
- E.C. Buck, N.R. Brown, N.L. Dietz, Contaminant uranium phases and leaching at the Fernald Site in Ohio, Environ. Sci. Technol. 30 (1996) 81-88.
- D.B. Hunter, P.M. Bertsch, In situ examination of uranium contaminated soil particles by micro-X-ray absorption and micro-fluorescence spectroscopies, J. Radioanal. Nucl. Chem. 234 (1998) 237-242.
- D.W. Shoesmith, Used fuel and uranium dioxide dissolution studies-a review, Report No. NWMO TR-2007-03, The University of Western Ontario, Toronto, Ontario, Canada, 2007, On line at: http://www.nwmo.ca/adx/asp/ adxGetMedia.asp?DocID=1607,1554,1,Documents&MediaID=3320&Filename =NWMO-TR-2007-03 UraniumReview R0a.pdf.
- SNL, Chemical extraction for uranium contaminated soils, Sandia National Laboratories, Cost and performance report, Albuquerque, New Mexico and Hazardous Waste Remedial Actions Program, Oak Ridge, TN, 1998, On line at: http://costperformance.org/pdf/rmi.pdf.
- DOE, Work Plan for Phase III Feasibility Study 300-FF-5 Operable Unit, DOE/RL-2005-41, 2005, On line at: http://groundwater.pnl.gov/reports/DOE- RL-2005-41.pdf.
- C. Kantar, B.D. Honeyman, Citric acid enhanced remediation of soils contam- inated with uranium by soil flushing and soil washing, J. Environ. Eng. 132 (2006) 247-255.
- G. Gramss, K.-D. Voigt, H. Bergmann, Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric acid-treated uranium-mine-dump soil, J. Plant Nutr. Soil Sci. 167 (2004) 417-427.
- U. Schmidt, Enhancing phytoextraction: the effect of chemical soil manipula- tion on mobility, plant accumulation, and leaching of heavy metals, J. Environ. Qual. 32 (2003) 1939-1954.
- S. Ebbs, D. Brady, W. Norvell, L. Kochian, Uranium speciation, plant uptake, and phytoremediation, Pract. Periodical of Haz. Toxic, Radioact. Waste Manage. 5 (2001) 130-135.
- C.W. Francis, A.J. Mattus, M.P. Elless, M.E. Timpson, Carbonate-and citrate- based selective leaching of uranium from uranium-contaminated soils, in: Removal of Uranium from Uranium-Contaminated Soils, Phase I: Bench-Scale Testing, ORNL-6762, Oak Ridge National Laboratory, Oak Ridge, TN, 1993.
- C.W. Francis, M.E. Timpson, J.H. Wilson, Bench-and pilot-scale studies relating to the removal of uranium from uranium-contaminated soils using carbonate and citrate lixiviants, J. Hazard. Mater. 66 (1999) 67-87.
- F.Y.C. Huang, P.V. Brady, E.R. Lindgren, P. Guerra, Biodegradation of uranium- citrate complexes: implications for extraction of uranium from soils, Environ. Sci. Technol. 32 (1998) 379-382.
- J.J. Lenhart, S.E. Cabaniss, P. MacCarthy, B.D. Honeyman, Uranium(VI) com- plexation with citric, humic and fulvic acids, Radiochim. Acta 88 (2000) 345-353.
- G. Joshi-Tope, A.J. Francis, Mechanism of biodegradation of metal-citrate com- plexes by Pseudomonas fluorescens, J. Bacteriol. 177 (1995) 1989-1993.
- K. Jonathan, W. Andrea, A. Scott, W. David, F. Ronald, Method for removing depleted uranium from contaminated soils, United States Patent 5,573,738, 1996, On line at: http://www.mindfully.org/Nucs/DU- Contaminated-Soils12nov96.htm.
- J.K. Ma, A.W. Chow, S.A. Ranger, D.W. Peters, R.F. May, Method for removing depleted uranium from contaminated soils, United States Patent 5,573,738, 1996, On line at: http://www.patentstorm.us/patents/5573738- description.html.
- M.A. McHugh, V.J. Krukonis, Supercritical Fluid Extraction, 2nd ed., Elsevier, 1994.
- L.T. Taylor, Supercritical Fluid Extraction, John Wiley & Sons, 1996.
- A.J. Allen, Green chemistry: dense carbon dioxide and water as environmen- tally benign reaction media, Thesis, Massachusetts Institute of Technology, 2004.
- C.M. Wai, K.L. Laintz, Extraction of metals using supercritical fluid and chelate forming ligand, United States Patent 5,730,874, 1998.
- B.F. Myasoedov, Yu.M. Kulyako, I.G. Tananaev, G.V. Myasoedova, V.V. Yakshin, A.Yu. Tsivadze, Methods of separation of actinide elements based on com- plex formation in extraction and sorption systems, J. Alloys Compd. 444-445 (2007) 391-396.
- J.F. Brennecke, C.A. Eckert, Phase equilibria for supercritical fluid process design, AIChE J. 35 (1989) 1409-1427.
- Y. Meguro, S. Iso, Z. Yoshida, O. Tomioka, Y. Enokida, I. Yamamoto, Decontami- nation of uranium oxides from solid wastes by supercritical CO2 fluid leaching method using HNO3-TBP complex as a reactant, J. Supercrit. Fluids 31 (2004) 141-147.
- F. Weigel, J.J. Katz, G.T. Seaborg, Plutonium, in: L.R. Moss, J.J. Katz, G.T. Seaborg (Eds.), The Chemistry of the Actinide Elements, Chapman and Hall, London, 1986, p. 525.
- Y. Lin, R.D. Brauer, K.E. Laintz, C.M. Wai, Supercritical fluid extraction of lan- thanides and actinides from solid materials with a fluorinated -diketone, Anal. Chem. 65 (1993) 2549-2551.
- C.M. Wai, S. Wang, Supercritical fluid extraction: metals as complexes, J. Chro- matogr. A 785 (1997) 369-383.
- R. Kumar, N. Sivaraman, E.S. Vadivu, T.G. Srinivasan, P.R.V. Rao, Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extrac- tion, Radiochim. Acta 91 (2003) 197-202.
- R.D. Brauer, T.E. Carleson, J.D. Harrington, F. Jean, H. Jiang, Y. Lin, C.M. Wai, Selective chelation and extraction of lanthanides and actinides with supercrit- ical fluids, Technical Report No. EGG-WTD-10993, EG and G Idaho, Inc., Idaho Falls, ID, United States, 1994, On line at: http://www.osti.gov/energycitations/ servlets/purl/10146235-BSlI1T/native/10146235.PDF.
- Y. Meguro, S. Iso, J. Ougiyanagi, Z. Yoshida, Extraction of uranium(VI) and lan- thanide(III) ions into supercritical carbon dioxide fluid containing -diketone and tributylphosphate, Anal. Sci. 17 (Suppl.) (2001) i714-i724.
- A. Shadrin, A. Murzin, N.G. Smart, Supercritical fluid extraction of uranium and rare earth elements from solid surfaces, in: Proceedings of the 5th Meeting on Supercritical Fluids, Institut National Polytechnique de Lorraine, Nice, France, 1998, p. 155.
- A.A. Murzin, V.A. Babain, A.Yu. Shadrin, I.V. Smirnov, A.A. Lumpov, N.I. Orshkov, A.E. Miroslavov, M.Z. Muradymov, Supercritical fluid extraction of actinide complexes. I. SCE of adduct of uranyl trifluoroacetylacetonate with pyridine, Radiochemistry 43 (2001) 177.
- T.I. Trofimov, M.D. Samsonov, S.C. Lee, N.G. Smart, C.M. Wai, Ultrasound enhancement of dissolution kinetics of uranium oxides in supercritical carbon dioxide, J. Chem. Technol. Biotechnol. 76 (2001) 1223.
- K.-H. Chiu, H.K. Yak, J.S. Wang, C.M. Wai, Supercritical fluid extraction of mixed wastes, Green Chem. 6 (2004) 502-506.
- T. Shimada, S. Ogumo, K. Sawada, Y. Enokida, I. Yamamoto, Selective extraction of uranium from a mixture of metal or metal oxides by a tri-n-butylphosphate complex with HNO3 and H2O in supercritical CO2, Anal. Sci. 22 (2006) 1387-1391.
- L.T.K. Dung, T. Imai, O. Tomioka, M. Nakashima, K. Takahashi, Y. Meguro, Extraction of uranium from simulated ore by the supercritical carbon dioxide fluid extraction method with nitric acid-TBP complex, Anal. Sci. 22 (2006) 1425-1430.
- R. Kumar, N. Sivaraman, T.G. Srinivasan, P.R. Vasudeva Rao, Studies on the supercritical fluid extraction of uranium from tissue matrix, Radiochim. Acta 90 (2002) 141-145.
- P. Kumar, A. Pal, M.K. Saxena, K.L. Ramakumar, Supercritical fluid extraction of thorium from tissue paper matrix employing organophosphorus reagents, Radiochim. Acta 95 (2007) 701-708.
- Y.K. Agrawal, Selective supercritical fluid extraction of uranium(VI) using N-phenyl-(1,2-methano-fullerene C60)61-formohydroxamic acid and simultaneous on-line determination by inductively-coupled plasma-mass spectrometry (ICP-MS), fullerenes, Nanotubes Carbon Nanostruct. 14 (2006) 621-639.
- Y. Lin, C. Liu, H. Wu, H.K. Yak, C.M. Wai, Supercritical fluid extraction of toxic heavy metals and uranium from acidic solutions with sulfur- containing organophosphorus reagents, Ind. Eng. Chem. Res. 42 (2003) 1400- 1405.
- G. Boyd, R.M. Hirsch, Handbook of Groundwater Remediation Using Perme- able Reactive Barriers, Academic Press, 2002.
- J.L. Conca, J. Wright, Apatite II to remediate soil or groundwater containing uranium or plutonium, in: Radiochemistry Conference, Carlsbad, NM, 2003, On line at: www.clu-in.org/conf/itrc/prb/pu=apatite.pdf.
- USEPA, Field demonstration of permeable reactive barriers to remove dis- solved uranium from groundwater, Fry Canyon, Utah, September 1997 through September 1998, Interim Report, EPA 402-C-00-001, 2000b, On line at: http://www.epa.gov/radiation/docs/cleanup/402-c-00-001.pdf.
- K. Bronstein, Permeable Reactive Barriers for Inorganic and Radionu- clide Contamination, U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Office of Superfund Remediation and Technology Innovation, Washington, DC, 2005, On line at: http://clu- in.org/download/studentpapers/bronsteinprbpaper.pdf.
- E.C. England, Treatment of uranium-contaminated waters using organic- based permeable reactive barriers, Fed. Facil. Environ. J. 17 (2006) 19-35.
- D.L. Naftz, S.J. Morrison, J.A. Davis, C.C. Fuller, Handbook of Groundwater Remediation Using Permeable Reactive Barriers: Applications to Radionu- clides, Trace Metals, and Nutrients, Academic Press, New York, 2002.
- K.E. Roehl, K. Czurda, T. Meggyes, F. Simon, D.I. Stewart, Long-term Perfor- mance of Permeable Reactive Barriers, Elsevier, New York, 2005.
- H. Schad, P. Gratwohl, Funnel and gate systems for in-situ treatment of contaminated groundwater at former manufactured gas plant sites, in: H. Burmeier (Ed.), Treatment Walls and Permeable Reactive Barriers, vol. 229, NATO CCMS, Vienna, 1998, pp. 56-65.
- F.-G. Simon, V. Biermann, C. Segebade, M. Hedrich, Behaviour of uranium in hydroxyapatite-bearing permeable reactive barriers: investigation using 237 U as a radioindicator, Sci. Total Environ. 326 (2004) 249-256.
- C.C. Fuller, J.R. Bargar, J.A.M.J. Davis Piana, Mechanisms of uranium inter- actions with hydroxyapatite: implications for groundwater remediation, Environ. Sci. Technol. 36 (2002) 158-165.
- J.S. Arey, J.C. Seaman, P.M. Bertsch, Immobilization of uranium in contami- nated sediments by hydroxyapatite addition, Environ. Sci. Technol. 33 (1999) 337-342.
- J.C. Seaman, T. Meehan, P.M. Bertsch, Immobilization of cesium-137 and ura- nium in contaminated sediments using soil amendments, J. Environ. Qual. 30 (2001) 1206-1213.
- I. Thijs, L. Diels, N. Maes, H. Vandenhove, D. Jacques, E. Smolders, D. Mallants, Laboratory testing of uranium removal efficiency of reactive media used in groundwater remediation, Geophys. Res. Abs. 6 (2004) P0259.
- SCFA Lead Lab Technical Assistance Review of the Pit 7 Complex Source Con- tainment, Technical Assistance Request: Llnl #1, Lawrence Livermore National Laboratory January 29-30, 2001.
- J. Boonstra, C.J.N. Buisman, Biotechnology for sustainable hydrometallurgy, in: C.A. Young, A.M. Alfantazi, C.G. Anderson, D.B. Dreisinger, B. Harris, A. James (Eds.), Hydrometallurgy-Fifth International Conference in Honor of Professor Ian Ritchie, Volume 2: Electrometallurgy and Environmental Hydrometallurgy, TMS (The Minerals, Metals & Materials Society), 2003, pp. 1105-1124.
- J.R. Wild, A. Scozzafava, S.D. Varfolomeyev, Perspectives in bioremediation technologies for environmental improvement, in: Proceedings of the NATO Advanced Research Workshop on Biotechnical Remediation of Contaminated Sites, March 5-9, 1996, Lvov, Ukraine, NATO ASI Series, vol. 19, High Technol- ogy, Springer.
- R.L. Irvine, S.K. Sikdar, Bioremediation Technologies: Principles and Practice, vol. III, CRC Press, 1998.
- T.C. Hazen, H.H. Tabak, Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 2. Field research on biore- mediation of metals and radionuclides, Rev. Environ. Sci. Biotechnol. 4 (2005) 157-183.
- L.E. Macaskie, K.M. Bonthrone, P. Yong, D.T. Goddard, Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellu- lar lipopolysaccharide and associated phosphatase in biomineral formation, Microbiology 146 (2000) 1855-1867.
- K.T. Finneran, R.T. Anderson, K.P. Nevin, D.R. Lovley, Potential for bioremedi- ation of uranium-contaminated aquifers with microbial U(VI) reduction, Soil Sediment Contam. 11 (2002) 339-357.
- J.W. Kauffman, W.C. Laughlin, R.A. Baldwin, Microbiological treatment of ura- nium mine waters, Environ. Sci. Technol. 20 (1986) 243-248.
- M. Fomina, J.M. Charnock, S. Hillier, R. Alvarez, G.M. Gadd, Fungal transforma- tions of uranium oxides, Environ. Microbiol. 9 (2007) 1696-1710.
- J.R. Lloyd, J.C. Renshaw, Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies, Curr. Opin. Biotechnol. 16 (2005) 254-260.
- M.J. Wilkins, F.R. Livens, D.J. Vaughan, J.R. Lloyd, The impact of Fe(III)-reducing bacteria on uranium mobility, Biogeochemistry 78 (2006) 125-150.
- M. Gavrilescu, Removal of heavy metals from the environment by biosorption, Eng. Life Sci. 4 (2004) 219-232.
- M.Z.-C. Hu, J.M. Norman, B.D. Faison, M.E. Reeves, Biosorption of uranium by Pseudomonas aeruginosa strain CSU: characterization and comparison studies, Biotechnol. Bioeng. 51 (2000) 237-247.
- G.I. Karavaiko, G. Rossi, A.D. Agate, S.N. Groudev, Z.A. Avakyan, Biogeotech- nology of Metals, Manual, GKNT International Projects, Moscow, 1988.
- L.P. Wackett, D.L. Allen, Comment on bioremediation in the rhizosphere, Env- iron. Sci. Technol. 29 (1995) 551-552.
- P. Chang, K.-W. Kim, S. Yoshida, S.-Y. Kim, Uranium accumulation of crop plants enhanced by citric acid, Environ. Geochem. Health 27 (2005) 529-538.
- J. Wan, T.K. Tokunaga, E. Brodie, Z. Wang, Z. Zheng, D. Herman, T.C. Hazen, M.K. Firestone, S.R. Sutton, Reoxidation of bioreduced uranium under reducing conditions, Environ. Sci. Technol. 39 (2005) 6162-6169.
- J.L. Uhrie, J.I. Drever, P.J.S. Colberg, C.C. Nesbitt, In situ immobilization of heavy metals associated with uranium leach mines by bacterial sulfate reduction, Hydrometallurgy 43 (1996) 231-239.
- C. Lalli, M. Russell, Soil and water bioremediation using bioreac- tors, Groundwater Pollution Primer, 1996, On line at: http://www.cee. vt.edu/ewr/environmental/teach/gwprimer/bioreact/bior.html.
- J.-U. Lee, S.-M. Kim, K.-W. Kim, I.S. Kim, Microbial removal of uranium in uranium-bearing black shale, Chemosphere 59 (2005) 147-154.
- H.M. Lizama, I. Suzuki, Interaction of chalcopyrite and sphalerite with pyrite during leaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans, Can. J. Microbiol. 37 (1991) 304-311.
- L. Fekete, B. Czegledi, K. Czako-Ver, M. Kecskes, Use of microorganisms in hydrometallurgy, Hungarian Academy of Sciences, PECS (1980) 43-47.
- S.N. Groudev, A. Kontopoulos, I.I. Spasova, K. Komnitsas, A.T. Angelov, P.S. Georgiev, in: M. Herbert, K. Kovar (Eds.), Groundwater Quality: Remediation and Protection, IAHS Press, Wallingford, UK, 1998, pp. 249-255.
- D.R. Lovely, E.J.P. Phillips, Bioremediation of uranium contamination with enzymatic uranium reduction, Environ. Sci. Technol. 26 (1992) 2228-2234.
- H.A. Vrionis, R.T. Anderson, I. Ortiz-Bernad, K.R. O'Neill, C.T. Resch, A.D. Pea- cock, R. Dayvault, D.C. White, P.E. Long, D.R. Lovley, Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site, Appl. Environ. Microbiol. 71 (2005) 6308-6318.
- H. Brim, S.C. McFarlan, J.K. Fredrickson, K.W. Minton, M. Zhai, L.P. Wackett, M.J. Daly, Engineering Deinococcus radiourans for metal remediation in radioactive mixed waste environments, Nat. Biotechnol. 18 (2000) 85-90.
- D.R. Lovely, E.J.P. Phillips, Y.A. Gorby, E.R. Landa, Microbial reduction of ura- nium, Nature 350 (1991) 413-416.
- J. Luo, F.-A. Weber, O.A. Cirpka, W.-M. Wu, J.L. Nyman, J. Carley, P.M. Jardine, C.S. Criddle, P.K. Kitanidis, Modeling in-situ uranium(VI) bioreduction by sulfate- reducing bacteria, J. Contam. Hydrol. 92 (2007) 129-148.
- D.R. Lovely, Bioremediation of organic and metal contaminants with dissim- ilatory metal reduction, J. Ind. Microbiol. 14 (1995) 85-93.
- M.J. Thornley, Radiation resistance among bacteria, J. Appl. Bacteriol. 26 (1963) 334-345.
- E.L. Brodie, T.Z. DeSantis, D.C. Joyner, S.M. Baek, J.T. Larsen, G.L. Andersen, T.C. Hazen, P.M. Richardson, D.J. Herman, T.K. Tokunaga, J.M. Wan, M.K. Firestone, Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation, Appl. Environ. Microbiol. 72 (2006) 6288-6298.
- H. Beyenal, R.K. Sani, B.M. Peyton, A.C. Dohnalkova, J.E. Amonette, Z. Lewandowski, Uranium immobilization by sulfate-reducing biofilms, Envi- ron. Sci. Technol. 38 (2004) 2067-2074.
- J.C. Renshaw, L.J.C. Butchins, F.R. Livens, I. May, J.M. Charnock, J.R. Lloyd, Bioreduction of uranium: environmental implications of a pentavalent inter- mediate, Environ. Sci. Technol. 39 (2005) 5657-5660.
- M. Ginder-Vogel, W.-M. Wu, J. Carley, P. Jardine, S. Fendorf, C. Crid- dle, In situ biological uranium remediation within a highly con- taminated aquifer, Science Highlight, 2006, On line at: http://www- ssrl.slac.stanford.edu/research/highlights archive/u remed.pdf.
- J.K. Fredrickson, J.M. Zachara, D.W. Kennedy, M.C. Duff, Y.A. Gorby, S.M.W. Li, K.M. Krupka, Reduction of U(VI) in goethite (a-FeOOH) suspensions by a dis- similatory metal-reducing bacterium, Geochim. Cosmochim. Acta 64 (2000) 3085-3098.
- J.R. Spear, L.A. Figueroa, B.D. Honeyman, Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria, Appl. Env- iron. Microbiol. 66 (2000) 3711-3721.
- H. Xu, L.L. Barton, P. Zhang, Y. Wang, TEM investigation of U6+ and Re7+ reduc- tion by Desulfovibrio desulfuricans, a sulfate-reducing bacterium, Mater. Res. Soc. Symp. Proc. 608 (2000) 299-304.
- Y. Suzuki, S.D. Kelly, K.M. Kemner, J.F. Banfield, Enzymatic U(VI) reduction by Desulfosporosinus species, Radiochim. Acta 92 (2004) 11-16.
- J.K. Fredrickson, H.M. Kostandarithes, S.W. Li, A.E. Plymale, M.J. Daly, Reduc- tion of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1, Appl. Environ. Microbiol. 66 (2000) 2006-2011.
- H. Inoue, O. Takimura, H. Fuse, K. Murakami, K. Kamimura, Y. Yamaoka, Degradation of triphenyltin by a fluorescent pseudomonas, Appl. Environ. Microbiol. 66 (2000) 3492-3498.
- J.R. Lloyd, L.E. Macaskie, Bioremediation of radioactive metals, in: D.R. Lov- ley (Ed.), Environmental Microbe-Metal Interactions, ASM Press, 2000, pp. 277-327.
- K. Kashefi, D.R. Lovley, Reduction of Fe(III), Mn(IV), and toxic metals at 100 • C by Pyrobaculum islandicum, Appl. Environ. Microbiol. 66 (2000) 1050-1056.
- R. Ganesh, K.G. Robinson, G.D. Reed, G.S. Sayler, Reduction of hexavalent ura- nium from organic complexes by sulfate-and iron-reducing bacteria, Appl. Environ. Microbiol. 63 (1997) 4385-4391.
- B.M. Tebo, A.Y. Obraztsova, Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors, FEMS Microbiol. Lett. 162 (1998) 193-198.
- G. Bernhard, G. Geipel, T. Reich, V. Brendler, S. Amayri, H. Nitsche, Uranyl(VI) carbonate complex formation: validation Ca2UO2(CO3)3(aq) species, Radiochim. Acta 89 (2001) 511-518.
- S.N. Kalmykov, G.R. Choppin, Mixed Ca 2+ /UO2 2+ /CO3 2-complex formation at different ionic strengths, Radiochim. Acta 88 (2000) 603-606.
- S.C. Brooks, J.K. Fredrickson, S.L. Carroll, D.W. Kennedy, J.M. Zachara, A.E. Plymale, S.D. Kelly, K.M. Kemner, S. Fendorf, Inhibition of bacterial U(VI) reduction by calcium, Environ. Sci. Technol. 37 (2003) 1850-1858.
- Z. Zheng, T.K. Tokunaga, J. Wan, Influence of calcium carbonate on U(VI) sorp- tion to soils, Environ. Sci. Technol. 37 (2003) 5603-5608.
- USEPA, Introduction to Phytoremediation, EPA 600/R-99/107, 2000, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 2000.
- G. Fellet, L. Marchiol, D. Perosab, G. Zerbia, The application of phytoremedia- tion technology in a soil contaminated by pyrite cinders, Ecol. Eng. 31 (2007) 207-214.
- S. Susarla, V.F. Medina, S.C. McCutcheon, Phytoremediation: an ecolog- ical solution to organic chemical contamination, Ecol. Eng. 18 (2002) 647-658.
- Y. Hashimoto, B.G. Lester, A.L. Ulery, K. Tajima, Screening of potential phytore- mediation plants for uranium-contaminated soils: a sand culture method and metal-removal model, J. Environ. Chem. 15 (2005) 771-781.
- S. Dushenkov, A. Mikheev, A. Prokhnevsky, M. Ruchko, B. Sorochinsky, Phy- toremediation of radiocesium-contaminated soil in the vicinity of chernobyl, Ukraine, Environ. Sci. Technol. 33 (1999) 469-475.
- L. Duquène, H. Vandenhove, F. Tack, E. van der Avoort, J. Wannijn, M. van Hees, Phytoavailability of uranium: influence of plant species and soil characteris- tics, in: B.J. Merkel, A. Hasche-Berger (Eds.), Uranium in the Environment. Mining Impact and Consequences, Springer Berlin Heidelberg, 2006, pp. 469-476.
- H. Vandenhove, M. Van Hees, S. Van Winckel, Feasibility of phytoextraction to clean up low-level uranium-contaminated soil, Int. J. Phytoremediation 3 (2001) 301-320.
- M. Mkandawire, B. Taubert, E. Gert Dudel, Resource manipulation in uranium and arsenic attenuation by Lemna gibba L. (duckweed) in tailing water of a former uranium mine, Water Air Soil Pollut. 166 (2005) 83-101.
- J.W. Huang, M.J. Blaylock, Y. Kapulnik, B.D. Ensley, Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants, Environ. Sci. Technol. 32 (1998) 2004-2008.
- A. Ramaswami, P. Carr, M. Burkhardt, Plant-uptake of uranium: hydroponic and soil system studies, Int. J. Phytoremediation 3 (2001) 189-201.
- R.H.S.F. Vieira, B. Volesky, Biosorption: a solution to pollution? Int. Microbiol. 3 (2000) 17-24.
- B. Volesky, Z.R. Holan, Biosorption of heavy metals, Biotechnol. Prog. 11 (1995) 235-250.
- L. Brinza, M. Dring, M. Gavrilescu, Biosorption of Cu 2+ ions from aqueous solution by Enteromorpha sp., Environ. Eng. Manage. J. 4 (2005) 41-50.
- G. Bitton, V. Freihofer, Influence of extracellular polysaccharides on the toxic- ity of copper and cadmium toward Klebsiella aerogenes, Microb. Ecol. 4 (1977) 119-125.
- J. Wase (Ed.), Biosorbents for Metal Ions (Library Binding), CRC Press, 1997.
- G.W. Strandberg, S.E. Shumate II, J.R. Parrott Jr., Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa, Appl. Environ. Microbiol. 41 (1981) 237-245.
- A.M. Marques, X. Roca, M.D. Simon-Pujol, M.C. Fusto, F. Congregado, Ura- nium accumulation by Pseudomonas aeruginosa sp. EPS-5028, Appl. Microbiol. Biotechnol. 35 (1991) 406-410.
- T. Tsuruta, Removal and recovery of uranyl ion using various microorganisms, J. Biosci. Bioeng. 94 (2002) 23-28.
- M.Z.-C. Hu, M. Reeves, Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix, Biotechnol. Prog. 13 (1997) 60-70.
- M.L. Merroun, S. Selenska-Pobell, Interactions of three eco-types of Acidithiobacillus ferrooxidans with U(VI), BioMetals 14 (2001) 171-179.
- P. Sar, S.K. Kazy, S.F. D'Souza, Radionuclide remediation using a bacterial biosorbent, Int. Biodeterior. Biodegrad. 54 (2004) 193-202.
- T. Tsuruta, Adsorption of uranium from acidic solution by microbes and effect of thorium on uranium adsorption by Streptomyces levoris, J. Biosci. Bioeng. 97 (2004) 275-277.
- Z. Gorab, B. Orlowska, R.W. Smith, Biosorption of lead and uranium by Strep- tomyces sp., Water Air Soil Pollut. 60 (1991) 99-106.
- C. White, G.M. Gadds, Biosorption of radionuclides by fungal biomass, J. Chem. Technol. Biotechnol. 49 (1990) 331-343.
- M. Galun, P. Keller, D. Malki, H. Feldstein, E. Galun, S. Siegel, B. Siegel, Recov- ery of uranium(VI) from solution by fungal biomass and fungal wall-related biopolymers, Science 219 (1983) 285-286.
- K. Akhtar, M.W. Akhtar, A.M. Khalid, Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum, Water Res. 41 (2007) 1366-1378.
- J. Yang, B. Volesky, Biosorption of uranium on Sargassum biomass, Water Res. 33 (1999) 3357-3363.
- K.A. Aleissa, E.-S.I. Shabana, F.I.S. Al-Masoud, Accumulation of uranium by filamentous green algae under natural environmental conditions, J. Radioanal. Nucl. Chem. 260 (2004) 683-687.
- T.A. Davis, B. Volesky, A. Mucci, A review of the biochemistry of heavy metal biosorption by brown algae, Water Res. 37 (2003) 4311-4330.
- H. Parab, S. Joshi, N. Shenoy, R. Verma, A. Lali, M. Sudersanan, Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies, Bioresour. Technol. 96 (2005) 1241-1248.
- T.S. Psareva, O.I. Zakutevskyy, N.I. Chubar, V.V. Strelko, T.O. Shaposhnikova, J.R. Carvalho, M.J. Neiva Correira, Uranium sorption on cork biomass, Colloids Surf. A: Physicochem. Eng. Aspects 252 (2005) 231-236.
- R. Donat, S. Aytas, Adsorption and thermodynamic behavior of uranium(VI) on Ulva sp.-Na bentonite composite adsorbent, J. Radioanal. Nucl. Chem. 265 (2005) 107-114.
- K.C. Bhainsa, S.F. D'Souza, Uranium (VI) biosorption by dried roots of eichhor- nia crassipes (water hyacinth), J. Environ. Sci. Health A 36 (2001) 1621-1631.
- USEPA, In Situ Remediation Technology: Electrokinetics, EPA542-K-94-007, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, DC, 1995, On line at: http://www.cluin.org/download/remed/electro.pdf.
- L. van Cauwenberghe, Electrokinetics, GWRTAC Technology Overview Report, TO-97-03, Ground-Water Remediation Technologies Center, Pittsburg, PA, 1997, On line at: http://clu-in.org/download/remed/elctro o.pdf.
- R.A. Shrestha, Investigations on the phenomena of accumulation and mobi- lization of heavy metals and arsenic at the sediment-water interface by electrochemically initiated processes, Thesis, Technical University Dresden, 2004.
- P.C. Wallmann, Electrokinetic Remediation, U.S. Department of Energy, DOE/EM-0138P, Office of Environmental Restoration and Waste Management, Office of Technology Development, Technology Catalogue, 1994, On line at: http://irridum.nttc.edu/env/tmp/008.html.
- E.R. Lindgren, P.V. Brady, In situ removal of contamination from soil, US Patent No. 5,676,819, 1997.
- K.R. Reddy, R.E. Saichek, K. Maturi, P. Ala, Effects of soil moisture and heavy metal concentrations on electrokinetic remediation, Indian Geotech. J. 32 (2002) 258-288.
- Y.B. Acar, R.J. Galeb, A.N. Alshawabkeh, R.E. Marks, W. Puppala, M. Brickad, R. Parkere, Electrokinetic remediation: basics and technology status, J. Hazard. Mater. 40 (1995) 117-137.
- B. Kornilovich, N. Mishchuk, K. Abbruzzese, G. Pshinko, R. Klishchenko, Enhanced electrokinetic remediation of metals-contaminated clay, Colloids Surf. A: Physicochem. Eng. Aspects 265 (2005) 114-123.
- Y. Xu, J.W. Zondlo, H.O. Finklea, A. Brennsteiner, Electrosorption of uranium on carbon fibers as a means of environmental remediation, Fuel Process. Technol. 68 (2000) 189-208.
- Z. Shen, X. Chen, J. Jia, L. Qu, W. Wang, Comparison of electrokinetic soil reme- diation methods using one fixed anode and approaching anodes, Environ. Pollut. 150 (2007) 193-199.
- S. Pamukcu, A. Weeks, J.K. Wittle, Electrochemical separation and stabiliza- tion of selected inorganic species porous media, J. Hazard. Mater. 55 (1997) 305-318.
- N. Mishchuk, B. Kornilovich, R. Klishchenko, pH regulation as a method of intensification of soil electroremediation, Colloids Surf. A: Physicochem. Eng. Aspects 306 (2007) 171-179.
- Y.B. Acar, A.N. Alshawabkeh, Principles of electrokinetic remediation, Environ. Sci. Technol. 27 (1993) 2638-2647.
- A.T. Yeung, Electrokinetic flow processes in porous media and their applica- tions, in: M.Y. Corapcioglu (Ed.), Advances in Porous Media, Elsevier, 1994, pp. 309-395.
- A. Yeung, Contaminant extractability by electrokinetics, Environ. Eng. Sci. 23 (2006) 202-224.
- D. Grolimund, M. Borkovec, K. Barttmetler, H. Sticher, Colloid-facilitated trans- port of strongly sorbing contaminants in natural porous media: a laboratory column study, Environ. Sci. Technol. 30 (1996) 3118-3123.
- M. Macka, P. Nesterenko, P.R. Haddad, Investigation of solute-wall interactions in separation of uranium(VI) and lanthanides by capillary electrophoresis using on-capillary complexation with arsenazo III, J. Microcolumn Sep. 11 (1999) 1-9.
- S. Scapolan, E. Ansoborlo, C. Moulin, C. Madic, Uranium speciation in biological medium by means of capillary electrophoresis and time- resolved laser-induced fluorescence, J. Radioanal. Nucl. Chem. 226 (1997) 145-148.
- G.E. Collins, Q. Lu, Microfabricated capillary electrophoresis sensor for ura- nium(VI), Anal. Chim. Acta 436 (2001) 181-189.
- A.P. Shapiro, R.F. Probstein, Removal of contaminants from saturated clay by electroosmosis, Environ. Sci. Technol. 27 (1993) 283-291.
- R. Lageman, W. Pool, G. Seffinga, Contaminated soil, electroreclamation: the- ory and practice, Chem. Ind. 8 (1989) 585-590.
- W.S. Kim, S.O. Kim, K.W. Kim, Enhanced electrokinetic extraction of heavy metals from soils assisted by ion exchange membranes, J. Hazard. Mater. B118 (2005) 93/102.
- K. Kyeong-Hee, K. Soon-Oh, L. Chang-Woo, L. Myung-Ho, K. Kyoung-Woong, Electrokinetic processing for the removal of radionuclides in soils, Sep. Sci. Technol. 38 (2003) 2137-2163.
- P.V. Sivapullaiah, B.S. Nagendra Prakash, Electroosmotic flow behaviour of metal contaminated expansive soil, J. Hazard. Mater. 143 (2007) 682-689.
- R.S. Amatya, Investigations on the phenomena of accumulation and mobi- lization of heavy metals and arsenic at the sediment-water interface by electrochemically initiated processes, Dissertation Thesis, Technical Univer- sity of Dresden, 2004.
- K.-H. Kim, S.-O. Kim, C.-W. Lee, M.-H. Lee, K.-W. Kim, Electrokinetic process- ing for the removal of radionuclides in soils, Sep. Sci. Technol. 38 (2003) 2137-2163.