Effect of telmisartan in limiting the cardiotoxic effect of daunorubicin in rats (original) (raw)

Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats

Pharmacological reports : PR

The therapeutic usefulness of doxorubicin (DXR), an anthracycline antibiotic, is limited by its cardiotoxicity. The present study investigated the effects of telmisartan, an angiotensin II receptor (AT1) antagonist against doxorubicin-induced cardiotoxicity in rats using biochemical and histopathological approaches. Doxorubicin (20 mg/kg) was injected intraperitoneally (ip) as a single dose and telmisartan (10 mg/kg) was administered orally for 7 days. Rats treated with DXR showed cardiotoxicity as evidenced by elevation of serum lactate dehydrogenase (LDH) activity, tissue malondialdehyde (MDA) level, catalase activity and a decrease in the level of glutathione (GSH). Pre- and post-treatment with telmisartan elicited a significant decrease in the activities of LDH and catalase in comparison with DXR-treated group. Furthermore, pretreatment with telmisartan also decreased lipid peroxidation (MDA level) and increased the GSH content in comparison with DXR group. However, the differen...

Angiotensin-converting enzyme inhibition and angiotensin AT 1-receptor antagonism equally improve doxorubicin-induced cardiotoxicity and nephrotoxicity

Pharmacological Research, 2009

Doxorubicin (Dox) is a potent anticancer agent; its clinical use is limited for its marked cardiotoxicity and nephrotoxicity. The present study investigated the possible protective effect of telmisartan, an angiotensin AT 1 -receptor blocker versus captopril, an angiotensin-converting enzyme inhibitor, on Dox-induced cardiotoxicity and nephrotoxicity in rats. Rats were allocated into four groups. Control group, Dox group, Dox + telmisartan group, and Dox + captopril group. Cardiotoxicity and nephrotoxicity were assessed biochemically and histopathologically. Frozen heart and kidney specimens were used for estimation of lipid peroxides product (MDA), reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and nitric oxide (NO). Expression of induced nitric oxide synthase (iNOS) was detected by immunohistochemistry. Coadministration of either telmisartan or captopril with Dox equally decreased the biochemical markers of both cardiotoxicity (LDH and CK-MP) and nephrotoxicity (urea and creatinine). Both telmisartan and captopril attenuated the effects of Dox on oxidative stress parameters and NO. Histopathologically, coadministration of either drug with Dox was able to attenuate Dox-induced myocardial fibrosis and renal tubular damage. Immunohistochemistry, expression of iNOS was increased in both cardiac and renal tissues. Both telmisartan and captopril significantly and equally attenuated the effect of Dox on all measured parameters. These results suggested that telmisartan has protective effects equal to that of captopril against Dox-induced cardiotoxicity and nephrotoxicity; implying that angiotensin II pathway plays a role in Dox-induced cardiac and renal damage. The protective effect of either drug relies, at least in part, on their antioxidant effects and decreased the expression of iNOS.

Ameliorating the anticancer drug ”Adriamycin” acute Cardiotoxicity by Rosuvastatin and Telmisartan in rats

Adriamycin, an anthracycline antibiotic is a powerful antineoplastic drug, but its therapeutic usefulness is limited by its cardiotoxicity. The present study investigated the effects of pretreatment with rosuvastatin and telmisartan alone or in combination against adriamycin induced cardiotoxicity in rats using biochemical approaches. The animals were divided into eight groups of 5 animals each. The first group received no drug(s) po but a single dose of distilled water (7.5 ml/kg, ip) at day eight, which serves as the control group. The second group received no drug(s) po but a single dose of adriamycin (15 mg/kg, ip) at day eight, and serves as adriamycin only received group. The third and sixth group received rosuvastatin (2 , 10) mg/kg/day respectively for nine days, and on day eight, one hour after drug administration, a single dose of adriamycin (15 mg/kg, ip) was given. The fourth and seventh group received telmisartan (2 , 4) mg/kg/day respectively for nine days, and at day ...

Ameliorative Potential of Rosuvastatin on Doxorubicin-induced Cardiotoxicity

Ameliorative Potential of Rosuvastatin on Doxorubicin-induced Cardiotoxicity , 2022

Objectives: The study aimed to explore the in vivo protective potential of rosuvastatin (ROSS), an oral antihyperlipidemic drug against doxorubicin (DOXO) induced cardio toxicity in rats. Materials and Methods: Cardiac toxicity was induced by DOXO injection (10 mg/kg, i.p.), once on the 20 th day of the experiment. Except for the control rats, all were received DOXO and the study was continued for up to 21 days. The influence of ROSS on acute treatment was analyzed by quantification of cardiac marker enzymes such as creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and liver marker enzymes like aspartate aminotransferase (AST), alanine aminotransferase (ALT) along with the measurement of in vivo antioxidants like superoxide dismutase and catalase. To observe histological changes of myocardial tissue hematoxylin and eosin staining were used. Results: Acute administration of DOXO resulted in a marked rise of cardiac marker enzymes that confirms the myocardial damage compared to control animals whereas administration of ROSS (10 mg/kg, p.o.) resulted in the significant reduction of CK-MB, LDH levels (p<0.05) and AST, ALT levels to a remarkable extent. Moreover, ROSS administration significantly increased the activities of various in vivo antioxidant levels. Conclusion: From the results, the acute administration of ROSS showed significant cardioprotective property, which was evidenced by a significant reduction of cardiac and liver marker enzymes along with significant improvement of in vivo antioxidant activities. Furthermore the results were supported with histopathological observations. Hence, it can be concluded that cardioprotective potential of ROSS may be through attenuation of oxidative stress by modulating oxidative damage in rats.

Investigation of the Antiremodeling Effects of Losartan, Mirabegron and Their Combination on the Development of Doxorubicin-Induced Chronic Cardiotoxicity in a Rat Model

International Journal of Molecular Sciences, 2022

Despite the effectiveness of doxorubicin (DOXO) as a chemotherapeutic agent, dose-dependent development of chronic cardiotoxicity limits its application. The angiotensin-II receptor blocker losartan is commonly used to treat cardiac remodeling of various etiologies. The beta-3 adrenergic receptor agonist mirabegron was reported to improve chronic heart failure. Here we investigated the effects of losartan, mirabegron and their combination on the development of DOXO-induced chronic cardiotoxicity. Male Wistar rats were divided into five groups: (i) control; (ii) DOXO-only; (iii) losartan-treated DOXO; (iv) mirabegron-treated DOXO; (v) losartan plus mirabegron-treated DOXO groups. The treatments started 5 weeks after DOXO administration. At week 8, echocardiography was performed. At week 9, left ventricles were prepared for histology, qRT-PCR, and Western blot measurements. Losartan improved diastolic but not systolic dysfunction and ameliorated SERCA2a repression in our DOXO-induced ...

Long-term protective effects of the angiotensin receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress and myocardial dysfunction

Experimental and therapeutic medicine, 2011

Chronic inflammation, oxidative stress and the renin-angiotensin system (RAS) play a significant role in chemotherapy-induced cardiotoxicity (CTX). Telmisartan (TEL), an antagonist of the angiotensin II type-1 receptor, was found to reduce anthracycline (ANT)-induced CTX. We carried out a phase II placebo (PLA)-controlled randomized trial to assess the possible role of TEL in the prevention of cardiac subclinical damage induced by epirubicin (EPI). Forty-nine patients (mean age ± SD, 53.0±8 years), cardiovascular disease-free with cancer at different sites and eligible for EPI-based treatment, were randomized to one of two arms: TEL n=25; PLA n=24. A conventional echocardiography equipped with Tissue Doppler imaging, strain and strain rate (SR) was performed, and serum levels of proinflammatory cytokines, IL-6 and TNF-α, and oxidative stress parameters, reactive oxygen species (ROS) and glutathione peroxidase were determined. All assessments were carried out at baseline, after every...

Chronic cardiotoxicity of doxorubicin involves activation of myocardial and circulating matrix metalloproteinases in rats

Acta Pharmacologica Sinica, 2012

Aim: To investigate the role of matrix metalloproteinases (MMPs) in the responses of rats to a prolonged doxorubicin (DOX) treatment. Methods: Male Wistar rats were used. DOX was administered by intraperitoneal injections of seven doses (cumulative dose was 15 mg/kg). Control animals were treated with saline. Tissue or plasma samples were collected at four and eight weeks after the application of the last dose. Protein levels were determined by immunoblot assay, and MMP activities were measured by gelatin zymography. Superoxide content was analyzed using a lucigenin chemiluminescence assay and superoxide dismutase (SOD) activities with a SOD assay kit. Qualitative structural alterations of the heart were characterized by transmission electron microscopy. Results: Systolic blood pressure was higher in DOX-treated rats as compared with the control rats at 8 weeks after treatment. In contrast, there were no differences in the heart rate between the control and DOX-treated rats. DOX treatment caused marked heterogeneous subcellular alterations of cardiomyocytes and structural disorganizations of the cardiac extracellular space. The effects of DOX were linked to a stimulation of plasma MMP-2 and MMP-9 activities that had already increased by 4 weeks after the end of the treatment. In the left ventricle, however, DOX only led to increased MMP-2 activation at 8 weeks after the end of treatment. These changes in tissue MMP-2 were connected with stimulation of Akt kinase activation, inhibition of SOD, an increase in superoxide levels, induction of iNOS protein expression and caspase-3 activation. Conclusion: Our results show that MMPs are involved in the chronic cardiotoxicity of DOX in rats. The data also suggest that reactive oxygen species (superoxide), NO production (iNOS) and the Akt kinase pathway can modulate MMP-2 activities in rat hearts influenced by DOX.

Angiotensin-converting enzyme inhibition and novel cardiovascular risk biomarkers

American Heart Journal, 2009

Doxorubicin (Dox) is a potent anticancer agent; its clinical use is limited for its marked cardiotoxicity and nephrotoxicity. The present study investigated the possible protective effect of telmisartan, an angiotensin AT 1 -receptor blocker versus captopril, an angiotensin-converting enzyme inhibitor, on Dox-induced cardiotoxicity and nephrotoxicity in rats. Rats were allocated into four groups. Control group, Dox group, Dox + telmisartan group, and Dox + captopril group. Cardiotoxicity and nephrotoxicity were assessed biochemically and histopathologically. Frozen heart and kidney specimens were used for estimation of lipid peroxides product (MDA), reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and nitric oxide (NO). Expression of induced nitric oxide synthase (iNOS) was detected by immunohistochemistry. Coadministration of either telmisartan or captopril with Dox equally decreased the biochemical markers of both cardiotoxicity (LDH and CK-MP) and nephrotoxicity (urea and creatinine). Both telmisartan and captopril attenuated the effects of Dox on oxidative stress parameters and NO. Histopathologically, coadministration of either drug with Dox was able to attenuate Dox-induced myocardial fibrosis and renal tubular damage. Immunohistochemistry, expression of iNOS was increased in both cardiac and renal tissues. Both telmisartan and captopril significantly and equally attenuated the effect of Dox on all measured parameters. These results suggested that telmisartan has protective effects equal to that of captopril against Dox-induced cardiotoxicity and nephrotoxicity; implying that angiotensin II pathway plays a role in Dox-induced cardiac and renal damage. The protective effect of either drug relies, at least in part, on their antioxidant effects and decreased the expression of iNOS.