Influence of Co-amorphization on the Physical Stability and Dissolution Performance of an Anthelmintic Drug Flubendazole (original) (raw)
In this work, the co-amorphization approach was applied to flubendazole (FluBZ), resulting in the formation of two novel solid forms of FluBZ with l-phenylalanine (Phe) and l-tryptophan (Trp). A variety of physicochemical techniques have been used to describe new systems, including powder X-ray diffraction, thermal methods, infrared spectroscopy, and scanning electron microscopy. Co-amorphization has been shown to suppress crystallization tendency and considerably increase the shelf-life storage of amorphous flubendazole solid across a wide range of relative humidities. The dissolution behavior of the amorphous forms in biorelevant media at pH = 1.6, pH = 6.5, and 37 °C has been studied in terms of Cmax (maximum FluBZ concentration), Tmax (time to attain peak drug concentration), and AUC (concentration area under the curve during dissolution). At pH = 6.5, a continuous supersaturation and the highest AUC value of all examined systems were observed for the FluBZ-Phe (1:1) system. The phase solubility diagrams revealed that the reason for the better dissolution performance of FluBZ-Phe (1:1) at pH = 6.5 is a complexation between the components in a solution. This work highlights the applicability of co-amorphous systems in improving the physical stability and dissolution performance of drug compounds with poor biopharmaceutical characteristics.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact