Accurate information transmission through dynamic biochemical signaling networks (original) (raw)
Related papers
Noise effects in nonlinear biochemical signaling
Physical Review E, 2012
It has been generally recognized that stochasticity can play an important role in the information processing accomplished by reaction networks in biological cells. Most treatments of that stochasticity employ Gaussian noise even though it is a priori obvious that this approximation can violate physical constraints, such as the positivity of chemical concentrations. Here, we show that even when such nonphysical fluctuations are rare, an exact solution of the Gaussian model shows that the model can yield unphysical results. This is done in the context of a simple incoherent-feedforward model which exhibits perfect adaptation in the deterministic limit. We show how one can use the natural separation of time scales in this model to yield an approximate model, that is analytically solvable, including its dynamical response to an environmental change. Alternatively, one can employ a cutoff procedure to regularize the Gaussian result. PACS numbers: 02.50.Le, 05.65.+b, 87.23.Ge, 87.23.Kg I. INTRODUCTION The role of stochasticity in the functioning of cellular signal transduction networks is a question of great topical interest [1]. Unlike typical condensed-matter systems, biological cells must carry out chemical manipulations with small numbers of molecules, an inherently noisy situation. Noise comes in a variety of forms, including fluctuations in chemicals to be sensed [2], fluctuations in the binding-unbinding of receptor arrays [3], fluctuations during the processing of information [4], and fluctuations in the implementation of downstream actions [5].
Noise propagation through extracellular signaling leads to fluctuations in gene expression
BMC Systems Biology, 2013
Background: Cell-to-cell variability in mRNA and proteins has been observed in many biological systems, including the human innate immune response to viral infection. Most of these studies have focused on variability that arises from (a) intrinsic stochastic fluctuations in gene expression and (b) extrinsic sources (e.g. fluctuations in transcription factors). The main focus of our study is the effect of extracellular signaling on enhancing intrinsic stochastic fluctuations. As a new source of noise, the communication between cells with fluctuating numbers of components has received little attention. We use agent-based modeling to study this contribution to noise in a system of human dendritic cells responding to viral infection. Results: Our results, validated by single-cell experiments, show that in the transient state cell-to-cell variability in an interferon-stimulated gene (DDX58) arises from the interplay between the spatial randomness of the cellular sources of the interferon and the temporal stochasticity of its own production. The numerical simulations give insight into the time scales on which autocrine and paracrine signaling act in a heterogeneous population of dendritic cells upon viral infection. We study the effect of different factors that influence the magnitude of the cell-to-cell-variability of the induced gene, including the cell density, multiplicity of infection, and the time scale over which the cellular sources begin producing the cytokine.
Scientific Reports
The cells need to process information about extracellular stimuli. They encode, transmit and decode the information to elicit an appropriate response. Studies aimed at understanding how such information is decoded in the signaling pathways to generate a specific cellular response have become essential. Eukaryotic cells decode information through two different mechanisms: the feed-forward loop and the promoter affinity. Here, we investigate how these two mechanisms improve information transmission. A detailed comparison is made between the stochastic model of the MAPK/ERK pathway and a stochastic minimal decoding model. The maximal amount of transmittable information was computed. The results suggest that the decoding mechanism of the MAPK/ERK pathway improve the channel capacity because it behaves as a noisy amplifier. We show a positive dependence between the noisy amplification and the amount of information extracted. Additionally, we show that the extrinsic noise can be tuned to ...
Living organisms are required to sense the environment accurately in order to ensure appropriate responses. The cells utilize specific signaling pathways to estimate the signal. The accuracy of estimating the input signal is severely limited by noise stemming from inherent stochasticity of the chemical reactions involved in signaling pathways. Cells employ multiple strategies to improve the accuracy by tuning the reaction rates, for instance amplifying the response, reducing the noise etc.. However, the pathway also consumes energy through incorporating ATP in phosphorylating key signaling proteins involved in the reaction pathways. In many instances, improvements in accuracy elicit extra energetic cost. For example, higher deactivation rate suppresses the basal pathway activity effectively amplifying the dynamic range of the response which leads to improvement in accuracy. However, higher deactivation rate also enhances the energy dissipation rate. Here, we employed a theoretical a...
Intrinsic fluctuations, robustness, and tunability in signaling cycles
2007
Covalent modification cycles (e.g., phosphorylation-dephosphorylation) underlie most cellular signaling and control processes. Low molecular copy number, arising from compartmental segregation and slow diffusion between compartments, potentially renders these cycles vulnerable to intrinsic chemical fluctuations. How can a cell operate reliably in the presence of this inherent stochasticity? How do changes in extrinsic parameters lead to variability of response? Can cells exploit these parameters to tune cycles to different ranges of stimuli? We study the dynamics of an isolated phosphorylation cycle. Our model shows that the cycle transmits information reliably if it is tuned to an optimal parameter range, despite intrinsic fluctuations and even for small input signal amplitudes. At the same time, the cycle is sensitive to changes in the concentration and activity of kinases and phosphatases. This sensitivity can lead to significant cell-to-cell response variability. It also provides a mechanism to tune the cycle to transmit signals in various amplitude ranges. Our results show that signaling cycles possess a surprising combination of robustness and tunability. This combination makes them ubiquitous in eukaryotic signaling, optimizing signaling in the presence of fluctuations using their inherent flexibility. On the other hand, cycles tuned to suppress intrinsic fluctuations can be vulnerable to changes in the number and activity of kinases and phosphatases. Such trade-offs in robustness to intrinsic and extrinsic fluctuations can influence the evolution of signaling cascades, making them the weakest links in cellular circuits.
Noise Filtering Strategies in Adaptive Biochemical Signaling Networks
Journal of Statistical Physics, 2011
Two distinct mechanisms for filtering noise in an input signal are identified in a class of adaptive sensory networks. We find that the high frequency noise is filtered by the output degradation process through timeaveraging; while the low frequency noise is damped by adaptation through negative feedback. Both filtering processes themselves introduce intrinsic noises, which are found to be unfiltered and can thus amount to a significant internal noise floor even without signaling. These results are applied to E. coli chemotaxis. We show unambiguously that the molecular mechanism for the Berg-Purcell time-averaging scheme is the dephosphorylation of the response regulator CheY-P, not the receptor adaptation process as previously suggested. The high frequency noise due to the stochastic ligand binding-unbinding events and the random ligand molecule diffusion is averaged by the CheY-P dephosphorylation process to a negligible level in E.coli. We identify a previously unstudied noise source caused by the random motion of the cell in a ligand gradient. We show that this random walk induced signal noise has a divergent low frequency component, which is only rendered finite by the receptor adaptation process. For gradients within the E. coli sensing range, this dominant external noise can be comparable to the significant intrinsic noise in the system. The dependence of the response and its fluctuations on the key time scales of the system are studied systematically. We show that the chemotaxis pathway may have evolved to optimize gradient sensing, strong response, and noise control in different time scales.
Noise decomposition of intracellular biochemical signaling networks using nonequivalent reporters
Experimental measurements of biochemical noise have primarily focused on sources of noise at the gene expression level due to limitations of existing noise decomposition techniques. Here, we introduce a mathematical framework that extends classical extrinsic-intrinsic noise analysis and enables mapping of noise within upstream signaling networks free of such restrictions. The framework applies to systems for which the responses of interest are linearly correlated on average, although the framework can be easily generalized to the nonlinear case. Interestingly, despite the high degree of complexity and nonlinearity of most mammalian signaling networks, three distinct tumor necrosis factor (TNF) signaling network branches displayed linearly correlated responses, in both wild-type and perturbed versions of the network, across multiple orders of magnitude of ligand concentration. Using the noise mapping analysis, we find that the c-Jun N-terminal kinase (JNK) pathway generates higher noise than the NF-κB pathway, whereas the activation of c-Jun adds a greater amount of noise than the activation of ATF-2. In addition, we find that the A20 protein can suppress noise in the activation of ATF-2 by separately inhibiting the TNF receptor complex and JNK pathway through a negative feedback mechanism. These results, easily scalable to larger and more complex networks, pave the way toward assessing how noise propagates through cellular signaling pathways and create a foundation on which we can further investigate the relationship between signaling system architecture and biological noise. signal transduction | intrinsic noise | extrinsic noise | analysis of variance | noise decomposition C ells transduce extracellular information through signal transduction pathways that often exhibit complex nonlinear behaviors. Commonly, receptor-ligand interactions initiate signals that diverge into parallel pathways and then converge onto common downstream elements. These branches can have different dose dependencies creating complicated dose-response characteristics, including biphasic properties (1-3). In such systems, the complexity of the network creates difficulty in identifying the sources of cell response variability, even if the topology is known.
Noise Induces Hopping between NF-κB Entrainment Modes
Cell systems, 2016
Oscillations and noise drive many processes in biology, but how both affect the activity of the transcription factor nuclear factor κB (NF-κB) is not understood. Here, we observe that when NF-κB oscillations are entrained by periodic tumor necrosis factor (TNF) inputs in experiments, NF-κB exhibits jumps between frequency modes, a phenomenon we call "cellular mode-hopping." By comparing stochastic simulations of NF-κB oscillations to deterministic simulations conducted inside and outside the chaotic regime of parameter space, we show that noise facilitates mode-hopping in all regimes. However, when the deterministic system is driven by chaotic dynamics, hops between modes are erratic and short-lived, whereas in experiments, the system spends several periods in one entrainment mode before hopping and rarely visits more than two modes. The experimental behavior matches our simulations of noise-induced mode-hopping outside the chaotic regime. We suggest that mode-hopping is a...
Noise generation, amplification and propagation in chemotactic signaling systems of living cells
Biosystems, 2008
Theoretical considerations of stochastic signal transduction in living cells have revealed the gain-fluctuation relation, which provides a theoretical framework to describe quantitatively how noise is generated, amplified and propagated along a signaling cascade in living cells. We chose the chemotactic signaling of bacteria and eukaryotic cells as a typical example of noisy signal transduction and applied the gain-fluctuation relation to these signaling systems in order to analyze the effects of noise on signal transduction. Comparing our theoretical analysis with the experimental results of chemotaxis in bacteria Escherichia coli and eukaryote Dictyostelium discoideum revealed that noise in signal transduction systems limits the cells' chemotactic ability and contributes to their behavioral variability. Based on the kinetic properties of signaling molecules in living cells, the gain-fluctuation relation can quantitatively explain stochastic cellular behaviors.