Asymptotical Solutions for a Vibrationally Relaxing Gas (original) (raw)
Abstract
Using the weakly non‐linear geometrical acoustics theory, we obtain the small amplitude high frequency asymptotic solution to the basic equations governing one dimensional unsteady planar, spherically and cylindrically symmetric flow in a vibrationally relaxing gas with Van der Waals equation of state. The transport equations for the amplitudes of resonantly interacting waves are derived. The evolutionary behavior of non‐resonant wave modes culminating into shock waves is also studied.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (29)
- Rajan Arora. Similarity solutions and evolution of weak discontinuities in a van der Waals gas. The Canadian Applied Mathematics Quarterly, 13:297-311, 2005.
- Rajan Arora. Non-planar shock waves in a magnetic field. Computers and Mathematics with Applications (Elsevier), 56:2686-2691, 2008. (doi:10.1016/j.camwa.2008.03.056)
- Rajan Arora and V.D. Sharma. Convergence of strong shock in a van der Waals gas. SIAM J. Applied Mathematics, 66:1825-1837, 2006. (doi:10.1137/050634402)
- P.A. Blythe. Nonlinear wave propagation in a relaxing gas. J. Fluid Mech., 37:31-50, 1969. (doi:10.1017/S0022112069000401)
- P. Cehelsky and R.R. Rosales. Resonantly interacting weakly nonlinear hyper- bolic waves in the presence of shocks: A single space variable in a homogeneous, time independent medium. Studies in Applied Mathematics, 74:117-138, 1986.
- V. Choquet-Bruhat. Ondes asymptotique et approchees pour systemes d'equations aux derivees partielles nonlineaires. J. Math. Pures Appl., 48:119- 158, 1969.
- J. F. Clarke and M. McChesney. Dynamics of Relaxing Gases. Butterworths, London, 1976.
- P. Germain. Progressive waves. In 14th Prandtl Memorial Lecture, Jarbuch, der DGLR, pp. 11-30, 1971.
- Y. He and T.B. Moodie. Two-wave interactions for weakly nonlinear hyperbolic waves. Stud. Appl. Math., 88:241-267, 1993.
- Y. He and T.B. Moodie. Geometrical optics and post shock behaviour for nonlinear conservation laws. Applicable Analysis, 57:145-176, 1995. (doi:10.1002/cpa.3160360502)
- J.K. Hunter and J. Keller. Weakly nonlinear high frequency waves. Comm. Pure Appl. Math., 36:547-569, 1983. (doi:10.1002/cpa.3160360502)
- J.K. Hunter, A. Majda and R. Rosales. Resonantly interacting weakly nonlinear hyperbolic waves II. Several space variables. Stud. Appl. Math., 75:187-226, 1986.
- L.A. Kalyakin. Long wave asymptotics. Integrable equations as asymptotic limits of non-linear systems. RUSS. MATH. SURV., 44(1):3-42, 1989. translation from Uspehi Mat. Nauk, 1989. 44(1), (in Russian)
- A. Krylovas and R. Čiegis. Asymptotical analysis of one dimensional gas dy- namics equations. Math. Model. Anal., 6(1):117-128, 2001.
- A. Krylovas and R. Čiegis. Review of numerical asymptotic averaging for weakly nonlinear hyperbolic waves. Math. Model. Anal., 9(3):209-222, 2004.
- A. Majda and R. Rosales. Resonantly interacting weakly nonlinear hyperbolic waves. Stud. Appl. Math., 71:149-179, 1984.
- A.J. Majda, R. Rosales and M. Schonbek. A canonical system of integro- differential equations arising in resonant nonlinear acoustics. Studies in Applied Mathematics, 79:205-262, 1988.
- T.B. Moodie, Y. He and D.W. Barclay. Wavefront expansions for nonlinear hyperbolic waves. Wave Motion, 14:347-367, 1991. (doi:10.1016/0165-2125(91)90030-R)
- H. Ockenden and D.A. Spence. Nonlinear wave propagation in a relaxing gas. J. Fluid Mech., 39, 1969.
- D.F. Parker. Propagation of rapid pulses through a relaxing gas. Phys. Fluids, 15:256-262, 1972. (doi:10.1063/1.1693902)
- R. Arora
- Ch. Radha and V. D. Sharma. Propagation and interaction of waves in a relaxing gas. Philos. Trans. Roy. Soc. London A, 352:169-195, 1995. (doi:10.1098/rsta.1995.0062)
- W.A. Scott and N.H. Johannesen. Spherical nonlinear wave propagation in a vibrationally relaxing gas. Proc. R. Soc. London, Ser. A 382:103-134, 1982. (doi:10.1098/rspa.1982.0092)
- V.D. Sharma and Rajan Arora. Similarity solutions for strong shocks in an ideal gas. Stud. Appl. Math., 114:375-394, 2005. (doi:10.1111/j.0022-2526.2005.01557.x)
- V.D. Sharma and Ch. Radha. Similarity solutions for converging shock in a relaxing gas. Int. J. Engg. Science, 33:535-553, 1995. (doi:10.1016/0020-7225(94)00086-7)
- V.D. Sharma and Gopala Krishna Srinivasan. Wave interaction in a non- equilibrium gas flow. Int. J. Non-linear Mechanics, 40:1031-1040, 2005. (doi:10.1016/j.ijnonlinmec.2005.02.003)
- M. Shefter and R.R. Rosales. Quasi-periodic solutions in weakly nonlinear gas dynamics. part I. Numerical results in the inviscid case. Studies in Applied Mathematics, 103:279-337, 1999. (doi:10.1111/1467-9590.1034137)
- A.L. Shtaras. Asymptotic integration of weakly nonlinear partial differential equations(russian, english). Sov. Math. Dokl., 18:1462-1466, 1977. 1978; trans- lation from Dokl. Akad. Nauk SSSR 237, 525-528, 1977
- G.B. Whitham. Linear and Nonlinear Waves. Wiley, New York, 1974.