Fracture Toughness of Plasma Paste-Borided Layers Produced on Nickel-Based Alloys (original) (raw)

2018

Abstract

The boriding treatment is the suitable process which caused an increase in surface hardness and wear resistance of nickel and its alloys. However, the phase composition of boride layers strongly influences on layer properties—especially hardness and brittleness. The method of plasma paste boriding was used in this study to produce the hard boride layers on nickel-based alloys: Ni201, Inconel 600, and Nimonic 80A. This process was carried out at 800 °C (1073 K) for 3 h. The chemical composition of substrate material was the reason for producing of layers which were characterized by different thickness: 55 μm for Ni201, 42 μm for Inconel 600, 35 μm for Nimonic 80A. The lowest hardness (1000–1400 HV) and the highest fracture toughness (up to 2.6915 MPa m1/2) were measured for layer produced on Ni201. In this specimen, only nickel borides were detected. However, due to high content of chromium, in case of Inconel 600-alloy and Nimonic 80A-alloy, the higher hardness (in the range of 1000...

Sukru Taktak hasn't uploaded this paper.

Let Sukru know you want this paper to be uploaded.

Ask for this paper to be uploaded.