Disruption of Circadian Rhythms by Light During Day and Night (original) (raw)

Light-induced changes of the circadian clock of humans: increasing duration is more effective than increasing light intensity

Sleep, 2011

To evaluate the effect of increasing the intensity and/or duration of exposure on light-induced changes in the timing of the circadian clock of humans. Multifactorial randomized controlled trial, between and within subject design General Clinical Research Center (GCRC) of an academic medical center 56 healthy young subjects (20-40 years of age) Research subjects were admitted for 2 independent stays of 4 nights/3 days for treatment with bright or dim-light (randomized order) at a time known to induce phase delays in circadian timing. The intensity and duration of the bright light were determined by random assignment to one of 9 treatment conditions (duration of 1, 2, or 3 hours at 2000, 4000, or 8000 lux). Treatment-induced changes in the dim light melatonin onset (DLMO) and dim light melatonin offset (DLMOff) were measured from blood samples collected every 20-30 min throughout baseline and post-treatment nights. Comparison by multi-factor analysis of variance (ANOVA) of light-indu...

Effect of Light on Human Circadian Physiology

Sleep medicine clinics, 2009

The circadian system in animals and humans, being near but not exactly 24-hours in cycle length, must be reset on a daily basis in order to remain in synchrony with external environmental time. This process of entrainment is achieved in most mammals through regular exposure to light and darkness. In this chapter, we review the results of studies conducted in our laboratory and others over the past 25 years in which the effects of light on the human circadian timing system were investigated. These studies have revealed, how the timing, intensity, duration, and wavelength of light affect the human biological clock. Our most recent studies also demonstrate that there is much yet to learn about the effects of light on the human circadian timing system.

Midday exposure to bright light changes the circadian organization of plasma melatonin rhythm in humans

Neuroscience Letters, 1997

Effects of bright light exposure at midday were examined on plasma melatonin rhythm in humans under controlled living conditions. Bright light of 5000 lx was provided from the ceiling at midday (1100-1700 h) for 3 consecutive days and the circadian rhythm in plasma melatonin was determined from the fourth to fifth day. The control study was performed in the same subjects who spend four days under dim light conditions (less than 200 lx). The subjects were allowed to sleep from 2400 to 0800 h. The onset phase, but not the end phase, of plasma melatonin rhythm was significantly phase-advanced by bright light exposure. Furthermore, the area under the curve of nocturnal melatonin rise was significantly larger under bright light exposure than under dim light. These findings indicate that midday exposure to bright light for 3 consecutive days changes the circadian organization of plasma melatonin rhythm in humans.

Effects of light on human circadian rhythms

Reproduction Nutrition Development, 1999

Blind subjects with defective retinal processing provide a good model to study the effects of light (or absence of light) on the human circadian system. The circadian rhythms (melatonin, cortisol, timing of sleep/wake) of individuals with different degrees of light perception (n = 67) have been studied. Blind subjects with some degree of light perception (LP) mainly have normally entrained circadian rhythms, whereas subjects with no conscious light perception (NPL) are more likely to exhibit disturbed circadian rhythms. All subjects who were bilaterally enucleated showed free running melatonin and cortisol rhythms. Studies assessing the light-induced suppression of melatonin show the response to be intensity and wavelength dependent. In contrast to ocular light exposure, extraocular light failed to suppress night-time melatonin. Thus, ocular light appears to be the predominant time cue and major determinant of circadian rhythm type. Optimisation of the light for entrainment (intensity, duration, wavelength, time of administration) requires further study. © Inra/Elsevier, Paris circadian rhythms / light / melatonin / human / blindness

The Effects of Light at Night on Circadian Clocks and Metabolism

Endocrine Reviews, 2014

Most organisms display endogenously produced ϳ24 h fluctuations in physiology and behavior, termed circadian rhythms. Circadian rhythms are driven by a transcriptional-translational feedback loop that is hierarchically expressed throughout the brain and body, with the suprachiasmatic nucleus of the hypothalamus serving as the master circadian oscillator at the top of the hierarchy. Appropriate circadian regulation is important for many homeostatic functions including energy regulation. Multiple genes involved in nutrient metabolism display rhythmic oscillations and metabolically related hormones such as glucagon, insulin, ghrelin, leptin, and corticosterone are released in a circadian fashion. Mice harboring mutations in circadian clock genes alter feeding behavior, endocrine signaling, and dietary fat absorption. Moreover, misalignment between behavioral and molecular circadian clocks can result in obesity in both rodents and humans. Importantly, circadian rhythms are most potently synchronized to the external environment by light information and exposure to light at night potentially disrupts circadian system function. Since the advent of electric lights around the turn of the 20th century, exposure to artificial and irregular light schedules has become commonplace. The increase in exposure to light at night parallels the global increase in the prevalence of obesity and metabolic disorders. In this review, we propose that exposure to light at night alters metabolic function through disruption of the circadian system. We first provide an introduction to the circadian system, with a specific emphasis on the effects of light on circadian rhythms. Next we address interactions between the circadian system and metabolism. Finally, we review current experimental and epidemiological work directly associating exposure to light at night and metabolism.

Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue

The hypothesis that the suppression of melatonin (MLT) by exposure to light at night (LAN) may be one reason for the higher rates of breast and colorectal cancers in the developed world deserves more attention. The literature supports raising this subject for awareness as a growing public health issue. Evidence now exists that indirectly links exposures to LAN to human breast and colorectal cancers in shift workers. The hypothesis begs an even larger question: has medical science overlooked the suppression of MLT by LAN as a contributor to the overall incidence of cancer? The indirect linkage of breast cancer to LAN is further supported by laboratory rat experiments by David E. Blask and colleagues. Experiments involved the implanting of human MCF-7 breast cancer cell xenografts into the groins of rats and measurements were made of cancer cell growth rates, the uptake of linoleic acid (LA), and MLT levels. One group of implanted rats were placed in light–dark (12L:12D) and a second group in light–light (12L:12L) environments. Constant light suppressed MLT, increased cancer cell growth rates, and increased LA uptake into cancer cells. The opposite was seen in the light–dark group. The proposed mechanism is the suppression of nocturnal MLT by exposure to LAN and subsequent lack of protection by MLT on cancer cell receptor sites which allows the uptake of LA which in turn enhances the growth of cancer cells. MLT is a protective, oncostatic hormone and strong antioxidant having evolved in all plants and animals over the millennia. In vertebrates, MLT is normally produced by the pineal gland during the early morning hours of darkness, even in nocturnal animals, and is suppressed by exposure to LAN. Daily entrainment of the human circadian clock is important for good human health. These studies suggest that the proper use and color of indoor and outdoor lighting is important to the health of both humans and ecosystems. Lighting fixtures should be designed to minimize interference with normal circadian rhythms in plants and animals. New discoveries on blue-light-sensitive retinal ganglion cell light receptors that control the circadian clock and how those receptors relate to today's modern high intensity discharge (HID) lamps are discussed. There is a brief discussion of circadian rhythms and light pollution. With the precautionary principle in mind, practical suggestions are offered for better indoor and outdoor lighting practices designed to safeguard human health.

Human circadian rhythms: physiological and therapeutic relevance of light and melatonin

Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 2006

Ocular light plays a key role in human physiology by transmitting time of day information. The production of the pineal gland hormone melatonin is under the control of the light-dark cycle. Its profile of secretion defines biological night and it has been called the 'darkness hormone'. Light mediates a number of non-visual responses, such as phase shifting the internal circadian clock, increasing alertness, heart rate and pupil constriction. Both exogenous melatonin and light, if appropriately timed, can phase shift the human circadian system. These 'chronobiotic' effects of light and melatonin have been used successfully to alleviate and correct circadian rhythm disorders, such as those experienced following travel across time zones, in night shift work and in circadian sleep disorders. The effectiveness of melatonin and light are currently being optimized in terms of time of administration, light intensity, duration and wavelength, and melatonin dose and formulatio...

Naturalistic Intensities of Light at Night: A Review of the Potent Effects of Very Dim Light on Circadian Responses and Considerations for Translational Research

Frontiers in Neurology, 2021

In this review, we discuss the remarkable potency and potential applications of a form of light that is often overlooked in a circadian context: naturalistic levels of dim light at night (nLAN), equivalent to intensities produced by the moon and stars. It is often assumed that such low levels of light do not produce circadian responses typically associated with brighter light levels. A solid understanding of the impacts of very low light levels is complicated further by the broad use of the somewhat ambiguous term “dim light,” which has been used to describe light levels ranging seven orders of magnitude. Here, we lay out the argument that nLAN exerts potent circadian effects on numerous mammalian species, and that given conservation of anatomy and function, the efficacy of light in this range in humans warrants further investigation. We also provide recommendations for the field of chronobiological research, including minimum requirements for the measurement and reporting of light,...