Immunotherapy of HPV-associated head and neck cancer (original) (raw)

Intranasal immunization with synthetic peptides corresponding to the E6 and E7 oncoproteins of human papillomavirus type 16 induces systemic and mucosal cellular immune responses and tumor protection

Vaccine, 2007

The E6 and E7 oncoproteins of the high-risk HPV type16 represent ideal targets for HPV vaccine development, they being consistently expressed in cervical cancer lesions. Since HPV-16 is primarily transmitted through genital mucosal route, mucosal immune responses constitute an essential feature for vaccination strategies against HPV-associated lesions. We present here evidence showing that mucosal immunization of mice by the intranasal route with a mixture of peptides E7 44-62 and E6 43-57 from the E7 and E6 oncoproteins of HPV-16, respectively, using a mutant cholera toxin adjuvant (CT-2*), primed strong antigen-specific cellular immune responses in systemic and mucosal tissues. Significant levels of IFN-γ production by both CD4 and CD8 cells were observed along with CTL responses that were effective against both peptide-pulsed targets as well as syngeneic tumor cells (TC-1) expressing the cognate E6 and E7 proteins. Furthermore, mice immunized with the peptide mixture and CT-2* effectively resisted TC-1 tumor challenge. These results together with our earlier observations that T cell responses to these peptides correlate with recurrence-free survival in women after ablative treatment for HPV-associated cervical intraepithelial neoplasia, support the potential of these E6 and E7 peptides for inclusion in vaccine formulations.

Targeting Head and Neck Cancer by Vaccination

Frontiers in Immunology, 2018

Head and neck cancer (HNC) is a heterogeneous group of squamous cell cancers that affect the oral cavity, pharynx, and larynx. Worldwide, it is the sixth most common cancer but in parts of Southern and SouthEast Asia, HNC is one of the most common cancers. A significant proportion of HNC is driven by human papillomavirus (HPV) infection, whereas HPV-independent HNC is associated with alcohol, smoking, and smokeless tobacco consumption. Here, we review the past and present experience of targeting HNC with vaccination focusing on HPV-derived antigens as well as non-viral antigens for HPV-negative HNC. Novel therapeutic approaches for HNC will focus not only on effective vaccine platforms but will also target the stroma-rich immunosuppressive microenvironment found in those tumours.

Intranasal immunization with synthetic peptides corresponding to the E6 and E7 oncoproteins of human papillomavirus type 16 induces systemic and mucosal cellular …

Vaccine, 2007

The E6 and E7 oncoproteins of the high-risk HPV type16 represent ideal targets for HPV vaccine development, they being consistently expressed in cervical cancer lesions. Since HPV-16 is primarily transmitted through genital mucosal route, mucosal immune responses constitute an essential feature for vaccination strategies against HPV-associated lesions. We present here evidence showing that mucosal immunization of mice by the intranasal route with a mixture of peptides E744–62 and E643–57 from the E7 and E6 oncoproteins of HPV-16, respectively, using a mutant cholera toxin adjuvant (CT-2*), primed strong antigen-specific cellular immune responses in systemic and mucosal tissues. Significant levels of IFN-γ production by both CD4 and CD8 cells were observed along with CTL responses that were effective against both peptide-pulsed targets as well as syngeneic tumor cells (TC-1) expressing the cognate E6 and E7 proteins. Furthermore, mice immunized with the peptide mixture and CT-2* effectively resisted TC-1 tumor challenge. These results together with our earlier observations that T cell responses to these peptides correlate with recurrence-free survival in women after ablative treatment for HPV-associated cervical intraepithelial neoplasia, support the potential of these E6 and E7 peptides for inclusion in vaccine formulations.

A phase I dose escalation trial of MAGE-A3- and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN)

Cancer Immunology, Immunotherapy, 2014

Results Nine and seven patients were enrolled in the HPV16 and MAGE-A3 cohorts, respectively. No dose-limiting toxicities were observed, and toxicity was predominantly local and grade 1 (erythema, pain, and itching at the injection site). In those patients who received all four vaccinations, 80 % (4/5) of the HPV16 cohort and 67 % (4/6) of the MAGE-A3 cohort developed antigen-specific T cell and antibody responses to the vaccine. Significant concordance between T cell and antibody responses was observed for both groups. No clear dose-response correlation was seen. All patients progressed by RECIST at first repeat imaging, except for one patient in the MAGE-A3 500 µg cohort who had stable disease for 10.5 months. The median PFS and OS for the MAGE-A3 cohorts were 79 and 183 days, respectively, and for the HPV16 cohort 80 and 196 days, respectively.

A non-oncogenic HPV 16 E6/E7 vaccine enhances treatment of HPV expressing tumors

Cancer Gene Therapy, 2012

Human papillomaviruses (HPVs) are the causative factor for greater than 90% of cervical cancers and 25% of head and neck cancers. The incidence of HPV positive (+) head and neck squamous cell carcinomas (HNSCCs) has greatly increased in the last 30 years. E6 and E7 are the two key viral oncoproteins that induce and propagate cellular transformation. An immune response generated during cisplatin/radiation therapy improves tumor clearance of HPV(+) cancers. Augmenting this induced response during therapy with an adenoviral HPV16 E6/E7 vaccine improves long term survival in preclinical models. Here we describe the generation of an HPV16 E6/E7 construct, which contains mutations that render E6/E7 non-oncogenic, while preserving antigenicity. These mutations do not allow E6/E7 to degrade p53, pRb, PTPN13, or activate telomerase. Non-oncogenic E6/E7 (E6 Δ /E7 Δ ) expressed as a stable integrant, or in the [E1-, E2b-] adenovirus, lacks the ability to transform human cells while retaining the ability to induce an HPV specific immune response. Moreover, E6 Δ /E7 Δ plus chemotherapy/radiation statistically enhances clearance of established HPV(+) cancer in vivo.

Therapeutic Vaccination in Head and Neck Squamous Cell Carcinoma—A Review

Vaccines

Therapeutic vaccination is one of the most effective immunotherapeutic approaches, second only to immune checkpoint inhibitors (ICIs), which have already been approved for clinical use. Head and neck squamous cell carcinomas (HNSCCs) are heterogenous epithelial tumors of the upper aerodigestive tract, and a significant proportion of these tumors tend to exhibit unfavorable therapeutic responses to the existing treatment options. Comprehending the immunopathology of these tumors and choosing an appropriate immunotherapeutic maneuver seems to be a promising avenue for solving this problem. The current review provides a detailed overview of the strategies, targets, and candidates for therapeutic vaccination in HNSCC. The classical principle of inducing a potent, antigen-specific, cell-mediated cytotoxicity targeting a specific tumor antigen seems to be the most effective mechanism of therapeutic vaccination, particularly against the human papilloma virus positive subset of HNSCC. Howev...

Immunotherapy targeting HPV 16/18 generates potent immune responses in HPV-Associated Head and Neck Cancer

Clinical cancer research : an official journal of the American Association for Cancer Research, 2018

Clinical responses with programmed death (PD-1) receptor directed antibodies occur in about 20% of patients with advanced head and neck squamous cell cancer (HNSCCa). Viral neoantigens, such as the E6/E7 proteins of HPV16/18 are attractive targets for therapeutic immunization, and offer an immune activation strategy that may be complementary to PD-1 inhibition. We report Phase Ib/II safety, tolerability and immunogenicity results of immunotherapy with MEDI0457 (DNA immunotherapy targeting HPV16/18 E6/E7 with IL-12 encoding plasmids) delivered by electroporation with CELLECTRA constant current device. Twenty-two patients with locally advanced, p16+ HNSCCa received MEDI0457. MEDI0457 was associated with mild injection site reactions but no treatment related grade 3-5 adverse events (AEs). Eighteen of 21 evaluable patients showed elevated antigen specific T cell activity by IFNg ELISpot and persistent cellular responses surpassing 100 SFU/10 PBMC were noted out to one year. Induction o...

A phase 1, single centre, open label, escalating dose study to assess the safety, tolerability and immunogenicity of a therapeutic human papillomavirus (HPV) DNA vaccine (AMV002) for HPV-associated head and neck cancer (HNC)

Cancer Immunology, Immunotherapy, 2020

Background We conducted a phase 1 dose escalation study (ACTRN12618000140257 registered on 30/01/2018) to evaluate the safety, tolerability and immunogenicity of a therapeutic human papillomavirus (HPV) DNA vaccine (AMV002) in subjects previously treated for HPV-associated oropharyngeal squamous cell carcinoma (OPSCC). Methods Eligible subjects had to have no evidence of recurrent and/or metastatic disease at least 12 weeks following the completion of treatment. Three dosing cohorts each consisted of four subjects: group 1: 0.25 mg/dose, group 2: 1 mg/dose, group 3: 4 mg/dose. AMV002 was delivered intradermally on days 0, 28 and 56. Incidence and severity of treatment-emergent adverse events (TEAE) including local reaction at the injection site, and vaccination compliance were recorded. T cell and antibody responses to HPV16 E6 and E7 were measured by interferon gamma (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay and enzyme-linked immunosorbent assay (ELISA). Results All subjects completed the vaccination programme and experienced mild discomfort at the injection site(s). Preimmunisation, cell-mediated responses to HPV16 E6 and E7 were evident in all subjects, and E7-specific antibodies were detected in 11 (91.7%), reflecting previous exposure to HPV. Post-vaccination, 10 of 12 (83.3%) subjects responded to one or more of the E6 and/or E7 peptide pools, while 2 (16.7%) did not show additional vaccine-induced cell-mediated responses. Vaccination resulted in a ≥ 4-fold increase in anti-HPV16 E7 antibody titre in one subject in group 3. Conclusions AMV002 was well tolerated at all dose levels and resulted in enhanced specific immunity to virus-derived tumour-associated antigens in subjects previously treated for HPV-associated OPSCC. Keywords Human papillomavirus • Head and neck cancer • Oropharyngeal squamous cell carcinoma • Immunotherapy • DNA vaccine • HPV E6 and E7 oncoproteins Abbreviations ELISA Enzyme-linked immunosorbent assay ELISpot Enzyme-linked immunosorbent spot HPV Human papillomavirus HNC Head and neck cancer IFNγ Interferon gamma OPSCC Oropharyngeal squamous cell carcinoma PBMC Peripheral blood mononuclear cells TEAE Treatment emergent adverse events J. Chandra and W. P. Woo contributed equally.