Sub-Super Solutions Method Combined with Schauder’s Fixed Point for Existence of Positive Weak Solutions for Anisotropic Non-Local Elliptic Systems (original) (raw)

Abstract

In this research, we investigate the presence of weak positive solutions for a family of anisotropic non-local elliptic systems in bounded domains using the sub-super solutions approach in conjunction with Schauder’s fixed point.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (20)

  1. Guliyev, V.S.; Omarova, M.N. Estimates for operators on generalized weighted Orlicz-Morrey spaces and their applications to non-divergence elliptic equations. Positivity 2022, 26, 1-27. [CrossRef]
  2. Gkikas, K.T.; Nguyen, P.T. Martin kernel of Schrödinger operators with singular potentials and applications to BVP for linear elliptic equations. Calc. Var. Partial. Differ. 2022, 61, 1-36. [CrossRef]
  3. Le, T.T.; Nguyen, L.H.; Tran, H.V. A Carleman-based numerical method for quasilinear elliptic equations with over-determined boundary data and applications. Comput. Math. Appl. 2022, 125, 13-24. [CrossRef]
  4. Ouhamou, B.; Ayoujil, A.; Berrajaa, M. Existence and multiplicity results for discrete anisotropic equations. J. Nonlinear Funct. Anal. 2021, 2021, 34.
  5. Aizicovici, S.; Papageorgiou, N.S.; Staicu, V. Nonlinear nonhomogeneous logistic equations of superdiffusive type. Appl. Set-Valued Anal. Optim. 2022, 4, 277-292.
  6. Figueiredo, G.M.; Suárez, A. The sub-supersolution method for Kirchhoff systems: Applications. In Contributions to Nonlinear Elliptic Equations and Systems Progress in Nonlinear Differential Equations and Their Applications; de Nolasco, C.A., Ruf, B., Moreira, E., Gossez, J.P., dos Monari, S.E., Cazenave, T., Eds.; Birkhäuser: Cham, Switzerland, 2015; Volume 86, pp. 217-227.
  7. Figueiredo, G.M.; Dos Santos, G.C.G.; Leandro, S.T. Existence of Solutions for a Class of Nonlocal Problems Driven by an Anisotropic Operator via Sub-Supersolutions. J. Convex Analysis 2022, 29, 291-320.
  8. Acerbi, E.; Fusco, N. Partial regularity under anisotropic (p, q) growth conditions. J. Diff. Equ. 1994, 107, 46-67. [CrossRef]
  9. Alves, C.O.; El Hamidi, A. Existence of solution for a anisotropic equation with critical exponent. Diff. Integral Equ. 2008, 21, 25-40.
  10. Dos Santos, G.C.G.; Figueiredo, G.M.; Silva, J.R.S. Multiplicity of positive solutions for a anisotropic problem via Sub-supersolution method and Mountain Pass Theorem. J. Convex Anal. 2020, 27, 1363-1374.
  11. Fragalà, I.; Gazzola, F.; Kawohl, B. Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 2004, 21, 715-734. [CrossRef]
  12. Figueiredo, G.M. Some remarks on the comparison principle in Kirchhoff equations. Rev. Mat. Iberoam. 2018, 34, 609-620.
  13. Alves, C.O.; Covei, D.P. Existence of solutions for a class of nonlocal elliptic problem via sub-supersolution method. Nonlinear Anal. Real World Appl. 2015, 23, 1-8. [CrossRef]
  14. Chung, N.T. An existence result for a class of Kirchhoff type systems via sub and supersolutions method. Appl. Math. Lett. 2014, 35, 95-101. [CrossRef]
  15. Dos Santos, G.; Figueiredo, G.; Tavares, L. Sub-super solution method for nonlocal systems involving the p(x)-Laplacian operator. Electron. J. Differ. Equ. 2020, 2020, 1-19.
  16. Figueiredo, G.; Julio, R.; Silva, S. Solutions to an anisotropic system via sub-supersolution method and Mountain Pass Theorem. Elec. J. Qual. Theory Differ. Equ. 2019, 46, 1-13. [CrossRef]
  17. Afrouzi, G.A.; Chung, N.Y.; Shakeri, S. Existence of positive solutions for Kirchhoff type equations. Electron. J. Differ. Equ. 2013, 2013, 1-8.
  18. Boulaaras, S.; Guefaifia, R. Existence of positive weak solutions for a class of Kirrcho § elliptic systems with multiple parameters. Math. Meth. Appl. Sci. 2018, 1-8. [CrossRef]
  19. Boulaaras, S.; Guefaifia, R.; Zennir, K. Existence of positive solutions for nonlocal p(x)-Kirchhoff elliptic systems. Adv. Pure Appl. Math. 2019, 10, 17-25. [CrossRef]
  20. Garcia-Melian, J.; Iturriaga, L. Some counterexamples related to the stationary Kirchhoff equation. Proc. Am. Math. Soc. 2016, 144, 3405-3411. [CrossRef]