Sub-Super Solutions Method Combined with Schauder’s Fixed Point for Existence of Positive Weak Solutions for Anisotropic Non-Local Elliptic Systems (original) (raw)
Abstract
In this research, we investigate the presence of weak positive solutions for a family of anisotropic non-local elliptic systems in bounded domains using the sub-super solutions approach in conjunction with Schauder’s fixed point.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (20)
- Guliyev, V.S.; Omarova, M.N. Estimates for operators on generalized weighted Orlicz-Morrey spaces and their applications to non-divergence elliptic equations. Positivity 2022, 26, 1-27. [CrossRef]
- Gkikas, K.T.; Nguyen, P.T. Martin kernel of Schrödinger operators with singular potentials and applications to BVP for linear elliptic equations. Calc. Var. Partial. Differ. 2022, 61, 1-36. [CrossRef]
- Le, T.T.; Nguyen, L.H.; Tran, H.V. A Carleman-based numerical method for quasilinear elliptic equations with over-determined boundary data and applications. Comput. Math. Appl. 2022, 125, 13-24. [CrossRef]
- Ouhamou, B.; Ayoujil, A.; Berrajaa, M. Existence and multiplicity results for discrete anisotropic equations. J. Nonlinear Funct. Anal. 2021, 2021, 34.
- Aizicovici, S.; Papageorgiou, N.S.; Staicu, V. Nonlinear nonhomogeneous logistic equations of superdiffusive type. Appl. Set-Valued Anal. Optim. 2022, 4, 277-292.
- Figueiredo, G.M.; Suárez, A. The sub-supersolution method for Kirchhoff systems: Applications. In Contributions to Nonlinear Elliptic Equations and Systems Progress in Nonlinear Differential Equations and Their Applications; de Nolasco, C.A., Ruf, B., Moreira, E., Gossez, J.P., dos Monari, S.E., Cazenave, T., Eds.; Birkhäuser: Cham, Switzerland, 2015; Volume 86, pp. 217-227.
- Figueiredo, G.M.; Dos Santos, G.C.G.; Leandro, S.T. Existence of Solutions for a Class of Nonlocal Problems Driven by an Anisotropic Operator via Sub-Supersolutions. J. Convex Analysis 2022, 29, 291-320.
- Acerbi, E.; Fusco, N. Partial regularity under anisotropic (p, q) growth conditions. J. Diff. Equ. 1994, 107, 46-67. [CrossRef]
- Alves, C.O.; El Hamidi, A. Existence of solution for a anisotropic equation with critical exponent. Diff. Integral Equ. 2008, 21, 25-40.
- Dos Santos, G.C.G.; Figueiredo, G.M.; Silva, J.R.S. Multiplicity of positive solutions for a anisotropic problem via Sub-supersolution method and Mountain Pass Theorem. J. Convex Anal. 2020, 27, 1363-1374.
- Fragalà, I.; Gazzola, F.; Kawohl, B. Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 2004, 21, 715-734. [CrossRef]
- Figueiredo, G.M. Some remarks on the comparison principle in Kirchhoff equations. Rev. Mat. Iberoam. 2018, 34, 609-620.
- Alves, C.O.; Covei, D.P. Existence of solutions for a class of nonlocal elliptic problem via sub-supersolution method. Nonlinear Anal. Real World Appl. 2015, 23, 1-8. [CrossRef]
- Chung, N.T. An existence result for a class of Kirchhoff type systems via sub and supersolutions method. Appl. Math. Lett. 2014, 35, 95-101. [CrossRef]
- Dos Santos, G.; Figueiredo, G.; Tavares, L. Sub-super solution method for nonlocal systems involving the p(x)-Laplacian operator. Electron. J. Differ. Equ. 2020, 2020, 1-19.
- Figueiredo, G.; Julio, R.; Silva, S. Solutions to an anisotropic system via sub-supersolution method and Mountain Pass Theorem. Elec. J. Qual. Theory Differ. Equ. 2019, 46, 1-13. [CrossRef]
- Afrouzi, G.A.; Chung, N.Y.; Shakeri, S. Existence of positive solutions for Kirchhoff type equations. Electron. J. Differ. Equ. 2013, 2013, 1-8.
- Boulaaras, S.; Guefaifia, R. Existence of positive weak solutions for a class of Kirrcho § elliptic systems with multiple parameters. Math. Meth. Appl. Sci. 2018, 1-8. [CrossRef]
- Boulaaras, S.; Guefaifia, R.; Zennir, K. Existence of positive solutions for nonlocal p(x)-Kirchhoff elliptic systems. Adv. Pure Appl. Math. 2019, 10, 17-25. [CrossRef]
- Garcia-Melian, J.; Iturriaga, L. Some counterexamples related to the stationary Kirchhoff equation. Proc. Am. Math. Soc. 2016, 144, 3405-3411. [CrossRef]