Optical constants of a solar system organic analog and the Allende meteorite in the near and mid-infrared (1.5-13 μm) (original) (raw)

2021

Measurements of visible and near-infrared reflection (0.38-5 μm) and mid to far infrared emission (5-200 μm) from telescope and satellite remote sensing instruments make it possible to investigate the composition of planetary surfaces via electronic transitions and vibrational modes of chemical bonds. Red spectral slopes at visible and near infrared wavelengths and absorption features at 3.3 and 3.4 μm observed in circumstellar disks, the interstellar medium, and on the surfaces of solar-system bodies are interpreted to be due to the presence of organic material and other carbon compounds. Identifying the origin of these features requires measurements of the optical properties of a variety of relevant analog and planetary materials. Spectroscopic models of dust within circumstellar disks and the interstellar medium as well as planetary regoliths often incorporate just one such laboratory measurement despite the wide variation in absorption and extinction properties of organic and ot...

Earth Planets Space, 63, 1021–1026, 2011 Amorphous organic solids as a component of interstellar dust

2010

The discovery of rapid synthesis of complex organic solids in the late stages of stellar evolution has led to a new realization that carbonaceous compounds can be a major significant component of interstellar dust. Signatures of aromatic and aliphatic solids are seen in interstellar clouds as well as the diffuse interstellar medium. Similar features are also seen in the integrated spectrum of galaxies. This has raised the possibilities that many of the unidentified astronomical phenomena such as the diffuse interstellar bands, the 217 nm feature, the extended red emission, the 21 and 30 µm emission features, could also arise from complex organics. In this paper, we discuss the possible chemical structures of these organic solids and the relationships between circumsmtellar and interstellar dust with the organics found in meteorites, asteroids, comets and planetary satellites. The possibility that all these organics share a common origin is discussed.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.