Single longitudinal mode fiber laser with integration of gallium-erbium co-doped fiber (original) (raw)

Abstract

Single longitudinal mode (SLM) lasers have gained much attention because of its ability to generate narrow linewidth output with low phase noise necessary for applications in optical communication and sensing. The generation of SLM in fiber laser is highly desirable due to its excellent performance and coupling simplicity. The issue however, is the complexity imposed by the inherently long cavity length and doped fiber gain medium, which lead to small free spectral range (FSR) and broad gain bandwidth. The experimental work presented in this thesis demonstrates SLM operation using Ga- EDF as gain medium together with several mode filtration techniques in the laser setup. High Erbium ion concentration in the fiber leads to high gain coefficient allowing short gain medium length to be used hence reducing the cavity length and widening the FSR. Ring cavity configuration employing optimum Ga-EDF length of 2 m was employed as the base structure. In order to suppress and filter the multi ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (50)

  1. H. Ahmad, M. Dernaika, O. M. Kharraz, M. Alimadad, M. F. Ibrahim, K. S. Lim, S. W. Harun "A tuneable, power efficient and narrow single longitudinal mode fibre ring laser using an inline dual-taper fibre Mach-Zehnder filter," Laser Phys., vol. 24, no. 8, p. 85111, Aug. 2014.
  2. Z. Fan, X. Zeng, C. Cao, Z. Feng, Z. Lai, and W. Dang, "Novel structure of an ultra-narrow-bandwidth fibre laser based on cascade filters: PGFBG and SA," Opt. Commun., vol. 368, pp. 150-154, 2016.
  3. S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, "Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber," Opt. Laser Technol., vol. 47, pp. 102-106, 2013.
  4. X. Wang, T. Zhu, L. Chen, and X. Bao, "Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser., Opt. Express, vol. 19, no. 10, pp. 9617-25, May 2011.
  5. F. G. Smith, Optics and Photonics : An Introduction Second Edition; Wiley . 2007.
  6. K. Thyagarajan, Fiber Optic: 1st Edition; Cambridge University Press, 1998.
  7. R. Tyson, Adaptive Optics Engineering Handbook,; CRC Press. 10. 1999.
  8. P. C. Becker, N. a. Olsson, J. R. Simpson, and I. P. Kaminow, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology.; Academic Press 1999.
  9. H. Ahmad, C. S. J. Lee, M. A. Ismail, Z. A. Ali, S. A. Reduan, N. E. Ruslan, M. F. Ismail, and S. W. Harun, "Zinc oxide (ZnO) nanoparticles as saturable absorber in passively Q-switched fiber laser," Optics Commun., vol. 381, pp. 72-76, 2016.
  10. B. Zhang, Q. Song, G. Wang, Y. Gao, Q. Zhang, M. Wang, and W. Wang, "Passively Q-switched Nd:GdTaO4 laser by graphene oxide saturable absorber," Opt. Eng., vol. 55, no. 8, 2016.
  11. Y. Zhang, C. Yang, Z. Feng, H. Deng, M. Peng, Z. Yang, and S. Xu, "Dual- wavelength passively q-switched single-frequency fiber laser," Opt. Express, vol. 24, no. 14, p. 16149, Jul. 2016.
  12. International Telecommunications Union, Optical Fibres, Cables and Systems,;ITU Publisher, 2009.
  13. A. Jain, N. Chandra, A. Anchal, and P. Kumar K, "Tunable multiwavelength mode-locked fiber laser using intra-cavity polarization and wavelength dependent loss," Optics & Laser Techn., vol. 83, pp. 189-194, 2016.
  14. Z. C. Tiu, A. Zarei, H. Ahmad, and S. W. Harun, "Multi-wavelength mode- locked erbium-doped fiber laser with photonic crystal fiber in figure-of-eight cavity," Optik -Int. Journal for Light and Electron Optics vol. 127, no. 15, pp. 5894-5898, 2016.
  15. C. Jin, S. Yang, X. Wang, H. Chen, M. Chen, and S. Xie, "Stable Mode-Locked Nanosecond Chirp-Free Pulse Generation With Ultra-Narrow Bandwidth," IEEE Photonics Technol. Lett., vol. 28, no. 12, pp. 1352-1355, Jun. 2016.
  16. H. J. R. Dutton, "Understanding Optical Communications," Int. Tech. Support Organ., vol. 1, pp. 1-638, 1998.
  17. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics.; Wiley-Interscience, 2007.
  18. S. Yin, Fiber Optic Sensors, Second Edition, CRC Press. 2002.
  19. C.-H. Yeh, T. T. Huang, H.-C. Chien, C.-H. Ko, and S. Chi, "Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation," Opt. Express, vol. 15, no. 2, p. 382, Jan. 2007.
  20. G. P. Agrawal, Nonlinear Fiber Optics: 5th Edition.; Academic Press 2001.
  21. J. a Miragliotta, "Analytical and Device-Related Applications of Nonlinear Optics," Johns Hopkins Appl. Tech. Dig., vol. 16, no. 4, pp. 348-356, 1995.
  22. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-Longitudinal-Mode Erbium-Doped Fiber Ring Laser Based on High Finesse Fiber Bragg Grating Fabry-PÉrot Etalon," IEEE Photonics Technol. Lett., vol. 20, no. 12, pp. 976-978, Jun. 2008.
  23. G. P. Agrawal, Fiber-optic communication systems: 4th edition.; Wiley, 2010.
  24. M. C. Paul, A. Dhar, S. Das, M. Pal, S. K. Bhadra, A. M. Markom, N. S. Rosli, A. Hamzah, H. Ahmad, and S. W. Harun, "Enhanced Erbium-Zirconia-Yttria- Aluminum Co-Doped Fiber Amplifier," IEEE Photonics J., vol. 7, no. 5, 2015.
  25. N. K. Dutta, Fiber Amplifiers and Fiber Lasers,; World Scientific. 2014
  26. K. P. W. Dissanayake, H. A. Abdul-Rashid, A. Safaei, A. Oresegun, N. Shahrizan, N. Y. M. Omar, Z. Yusoff, M. I. Zulkifli, S. Z. Muhamad-Yassin, K. A. Mat-Sharif, and N. Tamchek, "Fabrication and characterization of a Gallium co-doped Erbium optical fiber," Proc. ICP 2014 -5th Int. Conf. Photonics 2014, pp. 113-115, 2015.
  27. Hewlett-Packard engineers and scientists, Fiber Optic Test and Measurement.; Prentice Hall, 1998.
  28. Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, "Single-longitudinal- mode Er:GGG microchip laser operating at 27 μm," Opt. Lett., vol. 40, no. 16, 49 p. 3846, Aug. 2015.
  29. Yi Liu, Mingjiang Zhang, Peng Wang, Lan Li, Yuncai Wang, and Xiaoyi Bao, "Multiwavelength Single-Longitudinal-Mode Brillouin-Erbium Fiber Laser Sensor for Temperature Measurements With Ultrahigh Resolution," IEEE Photonics J., vol. 7, no. 5, pp. 1-9, Oct. 2015.
  30. Y. Zhou, P. C. Chui, K. K. Y. Wong, and S. Member, "Multiwavelength Single- Longitudinal-Mode Ytterbium-Doped Fiber Laser," IEEE Photonics Tech. Lett vol. 25, no. 4, pp. 385-388, 2013.
  31. F. Yan, W. Peng, S. Liu, T. Feng, Z. Dong, and G. K. Chang, "Dual-Wavelength Single-Longitudinal-Mode Tm-Doped Fiber Laser Using PM-CMFBG," IEEE Photonics Technol. Lett., vol. 27, no. 9, pp. 951-954, 2015.
  32. Z. Fan, X. Zeng, C. Cao, Z. Feng, Z. Lai, and W. Dang, "Novel structure of an ultra-narrow-bandwidth fibre laser based on cascade filters: PGFBG and SA," Opt. Commun., vol. 368, pp. 150-154, Jun. 2016.
  33. F. T. Passband, "Manual tunable bandpass filter.", DiCon Fiberoptics
  34. C.-H. Yeh, H.-Z. Chen, J.-Y. Chen, and C.-W. Chow, "Use of fiber Bragg grating (FBG) for stable and tunable erbium-doped fiber ring laser with single- longitudinal-mode (SLM) output," Laser Phys., vol. 25, no. 11, p. 115101, Nov. 2015.
  35. S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, "Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber," Opt. Laser Technol., vol. 47, pp. 102-106, 2013.
  36. T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, S. Tan, "Switchable and tunable dual- wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings," Laser Phys. Lett., vol. 11, no. 12, p. 125106, Dec. 2014.
  37. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, "Stable single-frequency traveling-wave fiber loop laser with integral saturable- absorber-based tracking narrow-band filter," Opt. Lett., vol. 20, no. 8, p. 875, Apr. 1995.
  38. B. Yin, S. Feng, Y. Bai, Z. Liu, and S. Jian, "Switchable Dual-Wavelength SLM Fiber Laser Using Asymmetric PMFBG Fabry-Perot Cavities," IEEE Photonics Technol. Lett., vol. 27, no. 12, pp. 1281-1284, Jun. 2015.
  39. B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, "Single-frequency and single- polarization DFB fiber laser based on tapered fbg and self-injection locking," IEEE Photonics J., vol. 7, no. 3, 2015.
  40. T. Zhu, X. Bao, and L. Chen, "A Single Longitudinal-Mode Tunable Fiber Ring Laser Based on Stimulated Rayleigh Scattering in a Nonuniform Optical Fiber,"
  41. J. Light. Technol., vol. 29, no. 12, pp. 1802-1807, Jun. 2011.
  42. Y. Gao, J. Sun, G. Chen, and H. Xie, "Single-longitudinal-mode BEFL incorporating a Bragg grating written in EDF," Opt. Commun., vol. 345, pp. 125-128, 2015.
  43. K. P. W. Dissanayake, H. A. Abdul-Rashid, A. Safaei, A. Oresegun, N. Shahrizan, N. Y. M. Omar, Z. Yusoff, M. I. Zulkifli, S. Z. Muhamad-Yassin, K. A. Mat-Sharif, and N. Tamchek, "Fabrication and characterization of a Gallium co-doped Erbium optical fiber," in 2014 IEEE 5th International Conference on Photonics (ICP), 2014, pp. 113-115.
  44. S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, "Widely Tunable Single Longitudinal Mode Fiber Laser With Cascaded Fiber-Ring Secondary Cavity," IEEE Photonics Tech. Lett. vol. 25, no. 4, pp. 323-326, 2013.
  45. C. H. Yeh, T. T. Huang, H. C. Chien, C. H. Ko, and S. Chi, "Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation," Opt. Express, vol. 15, no. 2, pp. 382-386, 2007.
  46. Y. Mustapha Kamil, M. H. Abu Bakar, M. A. Mustapa, M. H. Yaacob, A. Syahir, and M. A. Mahdi, "Sensitive and Specific Protein Sensing Using Single-Mode Tapered Fiber Immobilized With Biorecognition Molecules," IEEE Photonics J., vol. 7, no. 6, 2015.
  47. B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, "Tunable and switchable dual- wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter," Opt Express, vol. 22, no. 19, pp. 22528-22533, 2014.
  48. X. Cheng, P. Shum, and C. Tse, "Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Perot etalon," Photonics Res., vol. 20, no. 12, pp. 976-978, 2008.
  49. T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, "Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings," Laser Phys. Lett., vol. 11, no. 12, p. 125106, 2014.
  50. J. Zhou, A. Luo, Z. Luo, X. Wang, X. Feng, and B. Guan, "Dual-wavelength single-longitudinal-mode fiber laser with switchable wavelength spacing based on a graphene saturable absorber," Photonics Res., vol. 3, no. 2, pp. 21-24, 2015.