Multivariate Strategy Using Artificial Neural Networks for Seasonal Photovoltaic Generation Forecasting (original) (raw)
Electric power systems have experienced the rapid insertion of distributed renewable generating sources and, as a result, are facing planning and operational challenges as new grid connections are made. The complexity of this management and the degree of uncertainty increase significantly and need to be better estimated. Considering the high volatility of photovoltaic generation and its impacts on agents in the electricity sector, this work proposes a multivariate strategy based on design of experiments (DOE), principal component analysis (PCA), artificial neural networks (ANN) that combines the resulting outputs using Mixture DOE (MDOE) for photovoltaic generation prediction a day ahead. The approach separates the data into seasons of the year and considers multiple climatic variables for each period. Here, the dimensionality reduction of climate variables is performed through PCA. Through DOE, the possibilities of combining prediction parameters, such as those of ANN, were reduced...