Community composition of Symbiodiniaceae among four scleractinian corals in the eastern Gulf of Thailand (original) (raw)

Abstract

Symbiotic algae in the family Symbiodiniaceae are essential for scleractinian corals' survival and resilience. Understanding the community composition of Symbiodiniaceae species within coral colonies can provide insight into how corals respond to environmental changes. We examined Symbiodiniaceae community composition in four scleractinian coral hosts, Porites lutea, Platygyra daedalea, Pavona decussata and Pocillopora damicornis at six sites (n = 3-5 colonies/species/site) in the eastern Gulf of Thailand using Denaturing Gradient Gel Electrophoresis (DGGE) to resolve polymorphisms of the Internal Transcribed Spacer-2 (ITS2) DNA. The results showed that the Symbiodiniaceae genus Durusdinium was the most common clade in all coral hosts in all areas, whereas Cladocopium was common in P. lutea. We observed at least five prevalent Symbiodiniaceae species: Cladocopium goreaui (C1); two Cladocopium spp. (C3u and C15, C15v1); and at least two Durusdinium spp. (D1), which include Durusdinium sp. (D1-6 in P. damicornis), and at least one other Durusdinium sp. (D1) in all host coral species. Cladocopium sp. (C15) was highly abundant in P. lutea. Durusdinium spp. (D1) were the dominant species in P. decussata, P. daedalea and P. damicornis. PERMANOVA revealed the effects of site, host coral species and interaction between site and host coral species on the variation of Symbiodiniaceae species composition. Cluster analysis based on Bray-Curtis similarity index suggested four large groups. The first group, consisting of all coral host species (mainly P. daedalea, P. decussata and P. damicornis), had Durusdinium spp. (D1) as dominant species; the second group, consisting of P. lutea, had Cladocopium sp. (C15) as the dominant species; the third group, consisting of P. damicornis had D. glynnii (D1-6) as the dominant species; and the last group, consisting of P. daedalea had Cladocopium sp. (C3u) as the dominant species. Our results suggested complex interactions among Symbiodiniaceae species composition, coral species and environmental conditions.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (47)

  1. Anderson, M.J., Gorley, R.N., Clarke, K.R., 2008. Permanova for Primer: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.
  2. Arif, C., Daniels, C., Bayer, T., Banguera-Hinestroza, E., Barbrook, A., Howe, C.J., LaJeunesse, T.C., Voolstra, C.R., 2014. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol. Ecol. 23, 4418-4433.
  3. Baker, A.C., 1999. Symbiosis Ecology of Reef-Building Corals (Ph.D. thesis). University of Miami, p. 120.
  4. Berkelmans, R., van Oppen, M.J.H., 2006. The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change. Proc. R. Soc. Lond. B Biol. Sci. 273, 2305-2312.
  5. Blackall, L.L, Wilson, B., van Oppen, M.J.H., 2015. Coral-the world's most diverse symbiotic ecosystem. Mar. Ecol. 24, 5330-5347.
  6. Buranapratheprat, A., Luadnakrob, P., Yanagi, T., Morimoto, A., Qiao, F., 2016. The influences of the South China Sea and monsoonal winds on water column conditions in the Gulf of Thailand. Cont. Shelf. Res. 118, 100-110.
  7. Buranapratheprat, A., Yanagi, T., Matsumura, S., 2008. Seasonal variation in water column conditions in the upper Gulf of Thailand. Cont. Shelf. Res. 28 (17), 2509-2522.
  8. Chankong, A., Kongjandtre, N., Senanan, W., Manthachitra, V., 2018. Symbio- diniaceae associated with Porites lutea and Pocillopora damicornis in the Gulf of Thailand inferred from nucleotide sequences of Internal Transcribed Spacer-2. J. Fish. Environ. 42 (3), 66-79.
  9. Clarke, K.R., Gorley, R.N., 2006. Primer V6: User Manual/Tutorial. Primer-E Ltd., Plymouth.
  10. Ferrara, G.B., Murgia, B., Parodi, A.M., Valisano, L., Cerrano, C., Plamisano, G., Bavestrello, G., Sara, M., 2006. The assessment of DNA from marine organisms via a modified salting-out protocol. Cell Mol. Biol. Lett. 11, 155-160.
  11. Ferrier-Pagès, C., Hoogenboom, M., Houlbrèque, F., 2011. The role of plankton in coral trophodynamics. In: Dubinsky, Z., Stambler, N. (Eds.), Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht, The Netherlands, pp. 215-229.
  12. Gong, S., Chai, G., Xiao, Y., Xu, L., Yu, K., Li, J., Liu, F., Cheng, H., Zhang, F., Liao, B., Li, Z., 2018. Flexible symbiotic associations of Symbiodinium with five typical coral species in tropical and subtropical reef regions of the Northern South China Sea. Front. Micro. Biol. 9 (2485).
  13. Howells, E.J., Beltran, V.H., Larsen, N.W., Bay, L.K., Willis, B., Van Oppen, M.J., 2012. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Clim. Change 2, 116-120.
  14. Iglesias-Prieto, R., Beltrán, V.H., LaJeunesse, T.C., Reyes-Bonilla, H., Thomé, P.E., 2004. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern pacific. Proc. R. Soc. Lond. B 271, 1757-1763.
  15. Keshavmurthy, S., Meng, P., Wang, J., Yang, S., Kuo, C., Yang, S., Hsu, C., Gan, C., Dai, C., Chen, C.A, 2014. Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input. PeerJ 2, e327. http://dx.doi.org/10.7717/peerj.327.
  16. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.
  17. Kleypas, J.A., McManus, J.W., Menez, L.A.B., 1999. Environmental limits to coral reef development: Where do we draw the line? Amer. Zool. 39, 146-159.
  18. Kuanui, P., Chavanich, S., Viyakarn, V., Omori, M., Lin, C., 2015. Effects of tem- perature and salinity on survival rate of cultured coral and photosynthetic efficiency of zooxanthellae in coral tissue. Ocean Sci. J. 50 (2), 263-268.
  19. Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.
  20. LaJeunesse, T.C., 2002. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar. Biol. 141, 387-400.
  21. LaJeunesse, T.C., 2004. ''Species'' radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol. Biol. Evol. 22 (3), 570-581.
  22. LaJeunesse, T.C., Parkinson, J.E., Gabrielson, P.W., Jeong, H.J., Reimer, J.D., Voolstra, C.R., Santos, S.R., 2018. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28 (16), 2570-2580.
  23. LaJeunesse, T.C., Pettay, T., Sampayo, E.M., Phongsuwan, N., Brown, B., Obura, D., Hoegh-Guldberg, O., Fitt, W.K., 2010a. Long-standing environmental condi- tions, geographic isolation and host-symbiont specificity influence the rela- tive ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J. Biogeography 37, 785-800.
  24. LaJeunesse, T.C., Smith, R., Walther, M., Pinzón, J., Pettay, D.T., McGinley, Aschaffenburg, M., Medina-Rosas, P., Cupul-Magaña, A.L., Pérez, A.L., Reyes- Bonilla, H., Warner, M.E., 2010b. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc. R. Soc. B Biol. Sci. 277, 2925-2934.
  25. LaJeunesse, T.C., Trench, R.K., 2000. Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissimi (Brandt). Biol. Bull. 199, 126-134.
  26. LaJeunesse, T.C., Wham, D.C., Pettay, D.T., Parkinson, J.E., Keshavmurthy, S., Chen, C.A., 2014. Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) clade D are different species. Phycologia 53 (4), 305-319.
  27. Lien, Y., Keshavmurthy, S., Nakano, Y., Plathong, S., Huang, H., Hsu, C., Fukami, H., Yamashita, Y., Hsieh, H.J., Wang, J., Chen, A.C., 2013. Host genetics and Symbiodinium D diversity in a stress-tolerant scleractinian coral, Oulastrea crispata, in the West Pacific. Mar. Ecol. Prog. Ser. 473, 163-177. http://dx. doi.org/10.3354/meps10041.
  28. McArdle, B.H., Anderson, M.J., 2001. Fitting multivariate models to commu- nity data: A comment on distance-based redundancy analysis. Ecology 82, 290-297.
  29. Mieog, J.C., Olsen, J.L., Berkelmans, R., Bleuler-Martinez, S.A., Willis, B., van Oppen, M.J.H., 2009. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS One 4 (8), http://dx.doi.org/10\. 1371/annotation/e06b31ef-6b29-44ae-aec1-1740daa93f4b.
  30. Pettay, D.T., 2011. Diversity, Stability and Connectivity of Symbiodinium Popu- lations At Various Spatial Scales. (Doctoral dissertation). The Pennsylvania State University, p. 188.
  31. Pettay, D.T., Wham, J.H., LaJeunesse, T.C., 2011. Genotypic diversity and spatial- temporal distribution of Symbiodinium clones in an abundant reef coral. Mol. Ecol. 20 (24), 5197-5212.
  32. Rodriguez-Lanetty, M., Loh, W., Carter, D., Hoegh-Guldberg, O., 2001. Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Mar. Biol. 138, 1175-1181.
  33. Rowan, R., 2004. Thermal adaptation in reef coral symbionts. Nature 430 (742).
  34. Stat, M., Gates, R.D., 2011. Clade D Symbiodinium in scleractinian corals: A nugget of hope, a selfish opportunist, an ominous sign, or all of the above? Mar. Biol. http://dx.doi.org/10.1155/2011/730715.
  35. Stat, M., Loh, W.K.W., Hoegh-Guldberg, O., Carter, D.A., 2008. Symbiont acquisi- tion strategy drives host-symbiont associations in the southern Great Barrier Reef. Coral Reefs 27, 763-772.
  36. Stat, M., Yost, D.M., Gates, R.D., 2015. Geographic structure and host specificity shape the community composition of symbiotic dinoflagellates in corals from the Northwestern Hawaiian Islands. Coral Reefs 34, 1075-1086.
  37. Sudara, S., Yeemin, T., 1997. Status of coral reefs in Thailand. In: Grigg, R.W., Birkeland, C. (Eds.), Status of Coral Reefs in the Pacific. pp. 135-144.
  38. Sutthacheep, M., Yucharoen, M., Klinthong, W., Pengsakun, S., Sangmanee, K., Yeemin, T., 2012. Coral mortality following the 2010 mass bleaching event at Kut Island. Thail. Phuket. Mar. Biol. Cent. Res. Bull. 71, 83-92.
  39. Tanzil, I., Thuaibah, J., Abigayle, N., Yi Qing, T., Beverly, T., Yun, E., Huang, D., 2016. A preliminary characterisation of Symbiodinium diversity in some common corals from Singapore. Cosmos 12, 15-27.
  40. Thomas, L., Kendrick, G.A., Kennington, W.J., Richards, Z.T., Stat, M., 2014. Exploring Symbiodinium diversity and host specificity in acropora corals from geographical extremes of Western Australia with 454 amplicon pyrosequencing. Mol. Ecol. 23, 3113-3126.
  41. Tonk, L., Bongaerts, P., Sampayo, E.M., Hoegh-Guldberg, O., 2013a. SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef. BMC Ecol. 13, 7. http://dx.doi.org/10.1186/1472-6785-13- 7.
  42. Tonk, L., Sampayo, E.M., Weeks, S., Magno-Canto, M., Hoegh-Guldberg, O., 2013b. Host-specific interactions with environmental factors shape the distribution of Symbiodinium across the Great Barrier Reef. PLoS One 8 (7), e68533. http://dx.doi.org/10.1371/journal.pone.0068533.
  43. Wattayakorn, G., 2006. Environmental issues in the Gulf of Thailand. In: Wolan- ski, E. (Ed.), The Environment in Asia Pacific Harbours. Springer, Netherlands, pp. 249-259.
  44. Wham, D.C., Ning, G., LaJeunesse, T.C., 2017. SYmbiodinium glynnii sp. nov., a species of stress-tolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the Pacific Ocean. Phycologia 56 (4), 396-409.
  45. Wong, C.Y., Thompson, P., James, Y.X., Qiu, J.W., Baker, D.M., 2016. Symbiodinium clade C generality among common scleractinian corals in subtropical Hong Kong. Reg. Stud. Mar. Sci. 8, 439-444.
  46. Yeemin, T., Sutthacheep, M., Pettongma, R., 2006. Coral reef restoration projects in Thailand. Ocean Coast Manage. 49, 462-575.
  47. Zhang, H., Bhattacharya, D., Lin, S., 2005. Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J. Phycol. 41, 411-420.