Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids (original) (raw)
Abstract
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (134)
- J.A. Doudna, The promise and challenge of therapeutic genome editing, Nature 578 (7794) (2020) 229-236.
- A.V. Anzalone, L.W. Koblan, D.R. Liu, Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors, Nat. Biotechnol. 38 (2020) 824-844.
- G.J. Knott, J.A. Doudna, CRISPR-Cas guides the future of genetic engineering, Science 361 (6405) (2018) 866-869.
- D. Kim, K. Luk, S.A. Wolfe, J.-S. Kim, Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases, Annu. Rev. Biochem. 88 (2019) 191-220.
- A. Christopher Boyd, S. Guo, L. Huang, B. Kerem, Y.S. Oren, A.J. Walker, S.L. Hart, New approaches to genetic therapies for cystic fibrosis, J. Cyst. Fibros. 19 (2020) S54-S59.
- Y. Wu et al., Highly efficient therapeutic gene editing of human hematopoietic stem cells, Nat. Med. 25 (2019) 776-783.
- L. Amoasii, J.C.W. Hildyard, H. Li, E. Sanchez-Ortiz, A. Mireault, D. Caballero, R. Harron, T.-R. Stathopoulou, C. Massey, J.M. Shelton, R. Bassel-Duby, R.J. Piercy, E.N. Olson, Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy, Science 362 (6410) (2018) 86-91.
- J.M. Richner, S. Himansu, K.A. Dowd, S.L. Butler, V. Salazar, J.M. Fox, J.G. Julander, W.W. Tang, S. Shresta, T.C. Pierson, G. Ciaramella, M.S. Diamond, Modified mRNA Vaccines Protect against Zika Virus Infection, Cell 169 (1) (2017) 176.
- B.N. Aldosari, I.M. Alfagih, A.S. Almurshedi, Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines, Pharmaceutics 13 (2021) 206.
- K.S. Corbett, D.K. Edwards, S.R. Leist, O.M. Abiona, S. Boyoglu-Barnum, R.A. Gillespie, S. Himansu, A. Schäfer, C.T. Ziwawo, A.T. DiPiazza, K.H. Dinnon, S.M. Elbashir, C.A. Shaw, A. Woods, E.J. Fritch, D.R. Martinez, K.W. Bock, M. Minai, B.M. Nagata, G.B. Hutchinson, K. Wu, C. Henry, K. Bahl, D. Garcia-Dominguez, LingZhi Ma, I. Renzi, W.-P. Kong, S.D. Schmidt, L. Wang, Y.i. Zhang, E. Phung, L. A. Chang, R.J. Loomis, N.E. Altaras, E. Narayanan, M. Metkar, V. Presnyak, C. Liu, M.K. Louder, W. Shi, K. Leung, E.S. Yang, A. West, K.L. Gully, L.J. Stevens, N. Wang, D. Wrapp, N.A. Doria-Rose, G. Stewart-Jones, H. Bennett, G.S. Alvarado, M.C. Nason, T.J. Ruckwardt, J.S. McLellan, M.R. Denison, J.D. Chappell, I.N. Moore, K.M. Morabito, J.R. Mascola, R.S. Baric, A. Carfi, B.S. Graham, SARS- CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness, Nature 586 (7830) (2020) 567-571.
- M. Wang, Z.A. Glass, Q. Xu, Non-viral delivery of genome-editing nucleases for gene therapy, Gene Ther. 24 (2017) 144-150.
- J.T. Bulcha, Y. Wang, H. Ma, P.W.L. Tai, G. Gao, Viral vector platforms within the gene therapy landscape, Signal Transduct. Target. Ther. 6 (2021) 1-24.
- J.D. Finn et al., A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing, Cell Rep. 22 (2018) 2227-2235.
- K. Musunuru, A.C. Chadwick, T. Mizoguchi, S.P. Garcia, J.E. DeNizio, C.W. Reiss, K. Wang, S. Iyer, C. Dutta, V. Clendaniel, M. Amaonye, A. Beach, K. Berth, S. Biswas, M.C. Braun, H.-M. Chen, T.V. Colace, J.D. Ganey, S.A. Gangopadhyay, R. Garrity, L.N. Kasiewicz, J. Lavoie, J.A. Madsen, Y. Matsumoto, A.M. Mazzola, Y. S. Nasrullah, J. Nneji, H. Ren, A. Sanjeev, M. Shay, M.R. Stahley, S.H.Y. Fan, Y.K. Tam, N.M. Gaudelli, G. Ciaramella, L.E. Stolz, P. Malyala, C.J. Cheng, K.G. Rajeev, E. Rohde, A.M. Bellinger, S. Kathiresan, In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates, Nature 593 (7859) (2021) 429-434.
- High-dose AAV gene therapy deaths. Nat. Biotechnol. 38 (2020) 910-910.
- C.-Q. Song et al., Adenine base editing in an adult mouse model of tyrosinaemia, Nat. Biomed. Eng. 4 (2020) 125-130.
- J. Kim, Y. Eygeris, M. Gupta, G. Sahay, Self-assembled mRNA vaccines, Adv. Drug Deliv. Rev. 170 (2021) 83-112.
- D. Rosenblum et al., CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy, Sci. Adv. 6 (2020) eabc9450.
- N. Veiga et al., Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes, Nat. Commun. 9 (2018) 4493.
- L.M. Kranz, M. Diken, H. Haas, S. Kreiter, C. Loquai, K.C. Reuter, M. Meng, D. Fritz, F. Vascotto, H. Hefesha, C. Grunwitz, M. Vormehr, Y. Hüsemann, A. Selmi, A.N. Kuhn, J. Buck, E. Derhovanessian, R. Rae, S. Attig, J. Diekmann, R.A. Jabulowsky, S. Heesch, J. Hassel, P. Langguth, S. Grabbe, C. Huber, Ö. Türeci, U. Sahin, Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy, Nature 534 (7607) (2016) 396-401.
- C. Krienke, L. Kolb, E. Diken, M. Streuber, S. Kirchhoff, T. Bukur, Ö. Akilli- Öztürk, L.M. Kranz, H. Berger, J. Petschenka, M. Diken, S. Kreiter, N. Yogev, A. Waisman, K. Karikó, Ö. Türeci, U. Sahin, A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis, Science 371 (6525) (2021) 145-153.
- Q. Cheng et al., Selective organ targeting (SORT) nanoparticles for tissue- specific mRNA delivery and CRISPR-Cas gene editing, Nat. Nanotechnol. 15 (2020) 313-320.
- S. Liu et al., Membrane-destabilizing ionizable phospholipids for organ- selective mRNA delivery and CRISPR-Cas gene editing, Nat. Mater. 20 (2021) 701-710.
- M.A. Tomeh, X. Zhao, Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems, Mol. Pharm. 17 (2020) 4421-4434.
- R. Titze-de-Almeida, C. David, S.S. Titze-de-Almeida, The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market, Pharm. Res. 34 (2017) 1339-1363.
- G. Shim et al., Therapeutic gene editing: delivery and regulatory perspectives, Acta Pharmacol. Sin. 38 (2017) 738-753.
- K.-W. Huang et al., Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer, Sci. Adv. 6 (2020) eaax5032.
- M. Maeki, N. Kimura, Y. Sato, H. Harashima, M. Tokeshi, Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems, Adv. Drug Deliv. Rev. 128 (2018) 84- 100.
- Y. Wang, L. Miao, A. Satterlee, L. Huang, Delivery of oligonucleotides with lipid nanoparticles, Recent Dev. Oligonucleotide Based Ther. 87 (2015) 68-80.
- T.M. Allen, P.R. Cullis, Liposomal drug delivery systems: From concept to clinical applications, Adv. Drug Deliv. Perspect. Prospects 65 (2013) 36-48.
- J.A. Kulkarni, P.R. Cullis, R. van der Meel, Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility, Nucleic Acid Ther. 28 (2018) 146-157.
- D. Witzigmann et al., Lipid nanoparticle technology for therapeutic gene regulation in the liver, Adv. Drug Deliv. Rev. 159 (2020) 344-363.
- R. Fraley, S. Subramani, P. Berg, D. Papahadjopoulos, Introduction of liposome-encapsulated SV40 DNA into cells, J. Biol. Chem. 255 (1980) 10431-10435.
- K.A. Whitehead, R. Langer, D.G. Anderson, Knocking down barriers: advances in siRNA delivery, Nat. Rev. Drug Discov. 8 (2009) 129-138.
- X. Guo et al., Transfection reagent Lipofectamine triggers type I interferon signaling activation in macrophages, Immunol. Cell Biol. 97 (2019) 92-96.
- T.M. Allen, The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system, Adv. Drug Deliv. Rev. 13 (3) (1994) 285-309.
- S. Chen, Y.Y.C. Tam, P.J.C. Lin, M.M.H. Sung, Y.K. Tam, P.R. Cullis, Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA, J. Controlled Release 235 (2016) 236-244.
- T. Nakamura, M. Kawai, Y. Sato, M. Maeki, M. Tokeshi, H. Harashima, The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution, Mol. Pharm. 17 (3) (2020) 944-953.
- Y. Sato, Y. Note, M. Maeki, N. Kaji, Y. Baba, M. Tokeshi, H. Harashima, Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery, J. Controlled Release 229 (2016) 48-57.
- H. Cabral et al., Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size, Nat. Nanotechnol. (2011), https://doi. org/10.1038/nnano.2011.166.
- M. Gaumet, A. Vargas, R. Gurny, F. Delie, Nanoparticles for drug delivery: The need for precision in reporting particle size parameters, Eur. J. Pharm. Biopharm. 69 (1) (2008) 1-9.
- T. Tadros, P. Izquierdo, J. Esquena, C. Solans, Formation and stability of nano- emulsions, Adv. Colloid Interface Sci. 108-109 (2004) 303-318.
- Y. Wei, L. Quan, C. Zhou, Q. Zhan, Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application, Nanomedicine (2018), https://doi.org/10.2217/nnm-2018-0040.
- N. Hoshyar, S. Gray, H. Han, G. Bao, The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction, Nanomedicine 11 (6) (2016) 673- 692.
- E. Kupetz, H. Bunjes, Lipid nanoparticles: Drug localization is substance- specific and achievable load depends on the size and physical state of the particles, J. Controlled Release 189 (2014) 54-64.
- W. Mehnert, K. Mäder, Solid lipid nanoparticles: Production, characterization and applications, Adv. Drug Deliv. Rev. 64 (2012) 83-101.
- D.Z. Hou, C.S. Xie, K.J. Huang, C.H. Zhu, The production and characteristics of solid lipid nanoparticles (SLNs), Biomaterials 24 (10) (2003) 1781-1785.
- S. Joseph, H. Bunjes, Solid Lipid Nanoparticles for Drug Delivery, Drug Delivery Strategies Poorly Water-Soluble Drugs (2013), https://doi.org/ 10.1002/9781118444726.ch4.
- Y. Liu, P. Xie, D. Zhang, Q. Zhang, A mini review of nanosuspensions development, J. Drug Target. 20 (3) (2012) 209-223.
- C.B. Roces, G. Lou, N. Jain, S. Abraham, A. Thomas, G.W. Halbert, Y. Perrie, Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics, Pharmaceutics 12 (11) (2020) 1095.
- C. Webb et al., Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: A case study using protein-loaded liposomes, Int. J. Pharm. 582 (2020) 119266.
- T. Lorenz, S. Bojko, H. Bunjes, A. Dietzel, An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles, Lab. Chip 18 (4) (2018) 627-638.
- I.V. Zhigaltsev, N. Belliveau, I. Hafez, A.K.K. Leung, J. Huft, C. Hansen, P.R. Cullis, Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing, Langmuir 28 (7) (2012) 3633-3640.
- S.J. Shepherd, D. Issadore, M.J. Mitchell, Microfluidic formulation of nanoparticles for biomedical applications, Biomaterials 274 (2021) 120826.
- F. Tian, L. Cai, C. Liu, J. Sun, Microfluidic Technologies for Nanoparticle Formation, Lab. Chip 22 (3) (2022) 512-529.
- M. Schubert, Solvent injection as a new approach for manufacturing lipid nanoparticles -Evaluation of the method and process parameters, Eur. J. Pharm. Biopharm. 55 (1) (2003) 125-131.
- F.Q. Hu, H. Yuan, H.H. Zhang, M. Fang, Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization, Int. J. Pharm. 239 (1-2) (2002) 121-128.
- Dietzel, A. A brief introduction to microfluidics, in: Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells (2016). doi: 10.1007/978-3-319-26920-7_1.
- Y. Dong, W.K. Ng, S. Shen, S. Kim, R.B.H. Tan, Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers, Colloids Surf. B Biointerfaces 94 (2012) 68-72.
- M. Maeki, T. Saito, Y. Sato, T. Yasui, N. Kaji, A. Ishida, H. Tani, Y. Baba, H. Harashima, M. Tokeshi, A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure, RSC Adv. 5 (57) (2015) 46181- 46185.
- D. Chen, K.T. Love, Y.i. Chen, A.A. Eltoukhy, C. Kastrup, G. Sahay, A. Jeon, Y. Dong, K.A. Whitehead, D.G. Anderson, Rapid discovery of potent siRNA- containing lipid nanoparticles enabled by controlled microfluidic formulation, J. Am. Chem. Soc. 134 (16) (2012) 6948-6951.
- N. Kimura, M. Maeki, Y. Sato, Y. Note, A. Ishida, H. Tani, H. Harashima, M. Tokeshi, Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery, ACS Omega 3 (5) (2018) 5044-5051.
- C.C.L. Cheung, W.T. Al-Jamal, Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content, Int. J. Pharm. 566 (2019) 687-696.
- P. Erfle, J. Riewe, H. Bunjes, A. Dietzel, Optically monitored segmented flow for controlled ultra-fast mixing and nanoparticle precipitation, Microfluid. Nanofluidics 21 (12) (2017), https://doi.org/10.1007/s10404-017-2016-2.
- N. Shao, A. Gavriilidis, P. Angeli, Flow regimes for adiabatic gas-liquid flow in microchannels, Chem. Eng. Sci. 64 (11) (2009) 2749-2761.
- L. Xu, X.u. Tan, J. Yun, S. Shen, S. Zhang, C. Tu, W. Zhao, B. Tian, G. Yang, K. Yao, Formulation of poorly water-soluble compound loaded solid lipid nanoparticles in a microchannel system fabricated by mechanical microcutting method: Puerarin as a model drug, Ind. Eng. Chem. Res. 51 (35) (2012) 11373-11380.
- C. Richter, T. Krah, S. Büttgenbach, Novel 3D manufacturing method combining microelectrial discharge machining and electrochemical polishing, Microsyst. Technol. 18 (7-8) (2012) 1109-1118.
- S. Melzig, J.H. Finke, C. Schilde, A. Vierheller, A. Dietzel, A. Kwade, Fluid mechanics and process design of high-pressure antisolvent precipitation of fenofibrate nanoparticles using a customized microsystem, Chem. Eng. J. 371 (2019) 554-564.
- D. Carugo, E. Bottaro, J. Owen, E. Stride, C. Nastruzzi, Liposome production by microfluidics: Potential and limiting factors, Sci. Rep. 6 (1) (2016), https://doi. org/10.1038/srep25876.
- S. Zhang, J. Yun, S. Shen, Z. Chen, K. Yao, J. Chen, B. Chen, Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction, Chem. Eng. Sci. 63 (23) (2008) 5600-5605.
- J. Riewe, P. Erfle, S. Melzig, A. Kwade, A. Dietzel, H. Bunjes, Antisolvent precipitation of lipid nanoparticles in microfluidic systems -A comparative study, Int. J. Pharm. 579 (2020) 119167.
- S.J. Shepherd, C.C. Warzecha, S. Yadavali, R. El-Mayta, M.-G. Alameh, L. Wang, D. Weissman, J.M. Wilson, D. Issadore, M.J. Mitchell, Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device, Nano Lett. 21 (13) (2021) 5671-5680.
- K.H. Moss, P. Popova, S.R. Hadrup, K. Astakhova, M. Taskova, Lipid Nanoparticles for Delivery of Therapeutic RNA Oligonucleotides, Mol. Pharm. 16 (2019) 2265-2277.
- Y. Suzuki, H. Onuma, R. Sato, Y. Sato, A. Hashiba, M. Maeki, M. Tokeshi, M.E.H. Kayesh, M. Kohara, K. Tsukiyama-Kohara, H. Harashima, Lipid nanoparticles loaded with ribonucleoprotein-oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition, J. Controlled Release 330 (2021) 61-71.
- P. Shrimal, G. Jadeja, S. Patel, A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach, Chem. Eng. Res. Des. 153 (2020) 728-756.
- S.-J. Cao, S. Xu, H.-M. Wang, Y. Ling, J. Dong, R.-D. Xia, X.-H. Sun, Nanoparticles: Oral Delivery for Protein and Peptide Drugs, AAPS PharmSciTech 20 (5) (2019).
- X. Hou, T. Zaks, R. Langer, Y. Dong, Lipid nanoparticles for mRNA delivery, Nat. Rev. Mater. 6 (2021) 1078-1094.
- S. Hassan, G. Prakash, A. Bal Ozturk, S. Saghazadeh, M. Farhan Sohail, J. Seo, M. Remzi Dokmeci, Y.S. Zhang, A. Khademhosseini, Evolution and clinical translation of drug delivery nanomaterials, Nano Today 15 (2017) 91-106.
- A.J. Mukalel, R.S. Riley, R. Zhang, M.J. Mitchell, Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy, Cancer Lett. 458 (2019) 102-112.
- H. Yin et al., Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing, Nat. Biotechnol. 35 (2017) 1179- 1187.
- G.F. Deleavey, M.J. Damha, Designing Chemically Modified Oligonucleotides for Targeted Gene Silencing, Chem. Biol. 19 (2012) 937-954.
- M.A. Behlke, Chemical Modification of siRNAs for In Vivo Use, Oligonucleotides 18 (4) (2008) 305-320.
- A. Hendel et al., Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells, Nat. Biotechnol. 33 (2015) 985-989.
- J. Nelson, E.W. Sorensen, S. Mintri, A.E. Rabideau, W. Zheng, G. Besin, N. Khatwani, S.V. Su, E.J. Miracco, W.J. Issa, S. Hoge, M.G. Stanton, J.L. Joyal, Impact of mRNA chemistry and manufacturing process on innate immune activation, Sci. Adv. 6 (26) (2020), https://doi.org/10.1126/sciadv.aaz6893.
- N. Pardi, M.J. Hogan, R.S. Pelc, H. Muramatsu, H. Andersen, C.R. DeMaso, K.A. Dowd, L.L. Sutherland, R.M. Scearce, R. Parks, W. Wagner, A. Granados, J. Greenhouse, M. Walker, E. Willis, J.-S. Yu, C.E. McGee, G.D. Sempowski, B.L. Mui, Y.K. Tam, Y.-J. Huang, D. Vanlandingham, V.M. Holmes, H. Balachandran, G. Prakash, A. Shokr, N. Willemen et al. Advanced Drug Delivery Reviews 184 (2022) 114197
- S. Sahu, M. Lifton, S. Higgs, S.E. Hensley, T.D. Madden, M.J. Hope, K. Karikó, S. Santra, B.S. Graham, M.G. Lewis, T.C. Pierson, B.F. Haynes, D. Weissman, Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination, Nature 543 (7644) (2017) 248-251.
- K. Bahl et al., Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses, Mol. Ther. 25 (2017) 1316-1327.
- M.J. Landrum, J.M. Lee, M. Benson, G. Brown, C. Chao, S. Chitipiralla, B. Gu, J. Hart, D. Hoffman, J. Hoover, W. Jang, K. Katz, M. Ovetsky, G. Riley, A. Sethi, R. Tully, R. Villamarin-Salomon, W. Rubinstein, D.R. Maglott, ClinVar: public archive of interpretations of clinically relevant variants, Nucleic Acids Res. 44 (D1) (2016) D862-D868.
- P.D. Stenson et al., The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies, Hum. Genet. 136 (2017) 665-677.
- M. Arbab, M.W. Shen, B. Mok, C. Wilson, _ Z. Matuszek, C.A. Cassa, D.R. Liu, Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning, Cell 182 (2) (2020) 463-480.e30.
- T. Rothgangl, M.K. Dennis, P.J.C. Lin, R. Oka, D. Witzigmann, L. Villiger, W. Qi, M. Hruzova, L. Kissling, D. Lenggenhager, C. Borrelli, S. Egli, N. Frey, N. Bakker, J.A. Walker, A.P. Kadina, D.V. Victorov, M. Pacesa, S. Kreutzer, Z. Kontarakis, A. Moor, M. Jinek, D. Weissman, M. Stoffel, R. van Boxtel, K. Holden, N. Pardi, B. Thöny, J. Häberle, Y.K. Tam, S.C. Semple, G. Schwank, In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels, Nat. Biotechnol. 39 (8) (2021) 949-957.
- M.L. Guevara, F. Persano, S. Persano, Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy, Front. Chem. 8 (2020).
- J. Hartmann, M. Schüßler-Lenz, A. Bondanza, C.J. Buchholz, Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts, EMBO Mol. Med. 9 (9) (2017) 1183-1197.
- M.M. Billingsley et al., Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering, Nano Lett. 20 (2020) 1578-1589.
- M. Wiesinger, J. März, M. Kummer, G. Schuler, J. Dörrie, B. Schuler-Thurner, N. Schaft, Clinical-Scale Production of CAR-T Cells for the Treatment of Melanoma Patients by mRNA Transfection of a CSPG4-Specific CAR under Full GMP Compliance, Cancers 11 (8) (2019) 1198.
- J.G. Rurik, I. Tombácz, A. Yadegari, P.O. Méndez Fernández, S.V. Shewale, L.i. Li, T. Kimura, O.Y. Soliman, T.E. Papp, Y.K. Tam, B.L. Mui, S.M. Albelda, E. Puré, C.H. June, H. Aghajanian, D. Weissman, H. Parhiz, J.A. Epstein, CAR T cells produced in vivo to treat cardiac injury, Science 375 (6576) (2022) 91-96.
- L. Ma, T. Dichwalkar, J.Y.H. Chang, B. Cossette, D. Garafola, A.Q. Zhang, M. Fichter, C. Wang, S. Liang, M. Silva, S. Kumari, N.K. Mehta, W. Abraham, N. Thai, N.a. Li, K.D. Wittrup, D.J. Irvine, Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor, Science 365 (6449) (2019) 162-168.
- M. Cully, Driving CARs to last, Nat. Rev. Drug Discov. 19 (2020) 91.
- E. Beltrán-Gracia, A. López-Camacho, I. Higuera-Ciapara, J.B. Velázquez- Fernández, A.A. Vallejo-Cardona, Nanomedicine review: clinical developments in liposomal applications, Cancer Nanotechnol. 10 (2019) 11.
- T.M. Allen, P.R. Cullis, Drug Delivery Systems: Entering the Mainstream, Science 303 (5665) (2004) 1818-1822.
- R.L. Setten, J.J. Rossi, S. Han, The current state and future directions of RNAi- based therapeutics, Nat. Rev. Drug Discov. 18 (2019) 421-446.
- Z. Tian, G. Liang, K. Cui, Y. Liang, Q. Wang, S. Lv, X. Cheng, L. Zhang, Insight Into the Prospects for RNAi Therapy of Cancer, Front. Pharmacol. 12 (2021).
- J.B. Lee, K. Zhang, Y.Y.C. Tam, J. Quick, Y.K. Tam, P.JC. Lin, S. Chen, Y. Liu, J.K. Nair, I. Zlatev, K.G. Rajeev, M. Manoharan, P.S. Rennie, P.R. Cullis, A Glu-urea- Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo, Mol. Ther. -Nucleic Acids 5 (2016) e348.
- Y. Yamamoto et al., siRNA Lipid Nanoparticle Potently Silences Clusterin and Delays Progression When Combined with Androgen Receptor Cotargeting in Enzalutamide-Resistant Prostate Cancer, Clin. Cancer Res. 21 (2015) 4845- 4855.
- S.C. Semple et al., Abstract 2829: Preclinical characterization of TKM-080301, a lipid nanoparticle formulation of a small interfering RNA directed against polo-like kinase 1, Cancer Res. 71 (2011) 2829.
- B. Schultheis et al., First-in-Human Phase I Study of the Liposomal RNA Interference Therapeutic Atu027 in Patients With Advanced Solid Tumors, J. Clin. Oncol. 32 (2014) 4141-4148.
- A. Jimeno et al., Abstract CT032: A phase 1/2, open-label, multicenter, dose escalation and efficacy study of mRNA-2416, a lipid nanoparticle encapsulated mRNA encoding human OX40L, for intratumoral injection alone or in combination with durvalumab for patients with advanced malignancies, Cancer Res. 80 (2020) CT032.
- M. Schmidt et al., 88MO T-cell responses induced by an individualized neoantigen specific immune therapy in post (neo)adjuvant patients with triple negative breast cancer, Ann. Oncol. 31 (2020) S276.
- 51. Results of a Phase I Trial of SGT-53: A Systemically Administered, Tumor- Targeting Immunoliposome Nanocomplex Incorporating a Plasmid Encoding wtp53. Mol. Ther. 20 (2012) S21.
- D. Sarker et al., MTL-CEBPA, a Small Activating RNA Therapeutic Upregulating C/EBP-a, in Patients with Advanced Liver Cancer: A First-in-Human, Multicenter, Open-Label. Phase I Trial, Clin. Cancer Res. 26 (2020) 3936- 3946.
- L. Van Hoecke, K. Roose, How mRNA therapeutics are entering the monoclonal antibody field, J. Transl. Med. 17 (2019) 54.
- K. Fiedler, S. Lazzaro, J. Lutz, S. Rauch, R. Heidenreich, mRNA Cancer Vaccines, in: W. Walther (Ed.), Current Strategies in Cancer Gene Therapy, Springer International Publishing, 2016, pp. 61-85, https://doi.org/10.1007/978-3- 319-42934-2_5.
- N. Pardi, M.J. Hogan, F.W. Porter, D. Weissman, mRNA vaccines -a new era in vaccinology, Nat. Rev. Drug Discov. 17 (4) (2018) 261-279.
- N. Pardi, S. Tuyishime, H. Muramatsu, K. Kariko, B.L. Mui, Y.K. Tam, T.D. Madden, M.J. Hope, D. Weissman, Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes, J. Controlled Release 217 (2015) 345-351.
- H.H. Tam et al., Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination, Proc. Natl. Acad. Sci. 113 (2016) E6639-E6648.
- K.K.L. Phua, H.F. Staats, K.W. Leong, S.K. Nair, Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity, Sci. Rep. 4 (2014) 5128.
- C. Loquai et al., A shared tumor-antigen RNA-lipoplex vaccine with/without anti-PD1 in patients with checkpoint-inhibition experienced melanoma, J. Clin. Oncol. 38 (2020) 3136.
- I. Sahu, A.K.M.A. Haque, B. Weidensee, P. Weinmann, M.S.D. Kormann, Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases, Mol. Ther. 27 (2019) 803-823.
- A. Magadum, K. Kaur, L. Zangi, mRNA-Based Protein Replacement Therapy for the Heart, Mol. Ther. 27 (2019) 785-793.
- F. DeRosa et al., Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system, Gene Ther. 23 (2016) 699-707.
- P. Berraondo, P.G.V. Martini, M.A. Avila, A. Fontanellas, Messenger RNA therapy for rare genetic metabolic diseases, Gut 68 (7) (2019) 1323-1330.
- Y.V. Svitkin et al., N1-methyl-pseudouridine in mRNA enhances translation through eIF2a-dependent and independent mechanisms by increasing ribosome density, Nucleic Acids Res. 45 (2017) 6023-6036.
- B.R. Anderson et al., Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation, Nucleic Acids Res. 38 (2010) 5884-5892.
- A. Akinc et al., The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs, Nat. Nanotechnol. 14 (2019) 1084-1087.
- J.D. Gillmore et al., CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis, N. Engl. J. Med.
- C. Zhang, G. Maruggi, H. Shan, J. Li, Advances in mRNA Vaccines for Infectious Diseases, Front. Immunol. 10 (2019) 594.
- Let's talk about lipid nanoparticles. Nat. Rev. Mater. 6 (2021) 99.
- L. Versteeg, M.M. Almutairi, P.J. Hotez, J. Pollet, Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections, Vaccines 7 (2019) 122.
- A. Baeza Garcia et al., Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection, Nat. Commun. 9 (2018) 2714.
- D. Gallego-Perez et al., Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue, Nat. Nanotechnol. 12 (2017) 974-979.
- Y. Jin et al., Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells, Adv. Mater. 28 (2016) 7365-7374.
- S. Wang, S. Hashemi, S. Stratton, T.L. Arinzeh, The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior, Adv. Healthc. Mater. 10 (2021) 2001244.
- E. Egorov, C. Pieters, H. Korach-Rechtman, J. Shklover, A. Schroeder, Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems, Drug Deliv. Transl. Res. 11 (2021) 345-352.
- L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang, Z. Xu, X. Zhang, Artificial intelligence- powered microfluidics for nanomedicine and materials synthesis, Nanoscale 13 (46) (2021) 19352-19366.