Mutant huntingtin reduction in astrocytes slows disease progression in the bachd conditional huntington's disease mouse model (original) (raw)

Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease

Nature Medicine, 2014

Huntington's disease (HD) is a fatal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion leading to an elongated polyglutamine stretch in Huntingtin 1. Mutant Huntingtin (mHTT) is ubiquitously expressed but elicits selective cortical and striatal neurodegeneration in HD 2. The mechanistic basis for such selective neuronal vulnerability remains unclear. A necessary step towards resolving this enigma is to define the cell types in which mHTT expression is causally linked to the disease pathogenesis. Using a conditional human Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:

Mutant Huntingtin in Glial Cells Exacerbates Neurological Symptoms of Huntington Disease Mice

Journal of Biological Chemistry, 2010

Huntington disease (HD) is caused by an expansion of the polyglutamine (polyQ) repeat (>37Q) in huntingtin (htt), and age of onset is inversely correlated with the length of the polyQ repeat. Mutant htt with expanded polyQ is ubiquitously expressed in various types of cells, including glia, but causes selective neurodegeneration. Our recent study demonstrated that expression of the N-terminal mutant htt with a large polyQ repeat (160Q) in astrocytes is sufficient to induce neurological symptoms in mice (

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage

Human Molecular Genetics, 2007

To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and fulllength transgenic models of HD took longer to appear, 15-and 22-month CHL2 Q150/Q150 , 18-month Hdh Q92/Q92 and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected Downloaded from that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.

Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington's disease

Proceedings of the National Academy of Sciences of the United States of America, 2016

Recent studies have identified impairments in neural induction and in striatal and cortical neurogenesis in Huntington's disease (HD) knock-in mouse models and associated embryonic stem cell lines. However, the potential role of these developmental alterations for HD pathogenesis and progression is currently unknown. To address this issue, we used BACHD:CAG-Cre(ERT2) mice, which carry mutant huntingtin (mHtt) modified to harbor a floxed exon 1 containing the pathogenic polyglutamine expansion (Q97). Upon tamoxifen administration at postnatal day 21, the floxed mHtt-exon1 was removed and mHtt expression was terminated (Q97(CRE)). These conditional mice displayed similar profiles of impairments to those mice expressing mHtt throughout life: (i) striatal neurodegeneration, (ii) early vulnerability to NMDA-mediated excitotoxicity, (iii) impairments in motor coordination, (iv) temporally distinct abnormalities in striatal electrophysiological activity, and (v) altered corticostriatal...

Soluble mutant huntingtin drives early human pathogenesis in Huntington’s disease

Cellular and Molecular Life Sciences

Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles...

Depletion of wild-type huntingtin in mouse models of neurologic diseases

2003

Huntington's disease (HD) is caused by a mutation in the gene encoding for huntingtin resulting in selective neuronal degeneration. Because HD is an autosomal dominant disorder, affected individuals have one copy of the mutant and one copy of the wild-type allele. Huntingtin has antiapoptotic properties and is critical for cell survival. However, the important role of wild-type huntingtin in both HD and other neurological diseases has not been fully recognized. We demonstrate disease-associated decreased levels of fulllength huntingtin in brains of transgenic mouse models of HD, ischemia, trauma, and in spinal cord after injury. In addition, overexpression of wild-type huntingtin confers in vivo protection of neurodegeneration after ischemia. We propose that in HD, in addition to a toxic gain-of-function of mutant huntingtin, a parallel depletion of wild-type huntingtin results in a detrimental loss-of-function, playing an important role in disease progression.

Mutant Huntingtin Is Cleared from the Brain via Active Mechanisms in Huntington Disease

The Journal of Neuroscience, 2020

Huntington disease (HD) is a neurodegenerative disease caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Therapeutics that lower HTT have shown preclinical promise and are being evaluated in clinical trials. However, clinical assessment of brain HTT lowering presents challenges. We have reported that mutant HTT (mHTT) in the CSF of HD patients correlates with clinical measures, including disease burden as well as motor and cognitive performance. We have also shown that lowering HTT in the brains of HD mice results in correlative reduction of mHTT in the CSF, prompting the use of this measure as an exploratory marker of target engagement in clinical trials. In this study, we investigate the mechanisms of mHTT clearance from the brain in adult mice of both sexes to elucidate the significance of therapy-induced CSF mHTT changes. We demonstrate that, although neurodegeneration increases CSF mHTT concentrations, mHTT is also present in the CSF of mice in the ab...

Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity

The Journal of Cell Biology, 2005

Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny neurons (MSNs) in the brain. Because MSNs receive abundant glutamatergic input, their vulnerability to excitotoxicity may be largely influenced by the capacity of glial cells to remove extracellular glutamate. However, little is known about the role of glia in HD neuropathology. Here, we report that mutant huntingtin accumulates in glial nuclei in HD brains and decreases the expression of glutamate transporters. As a result, mutant huntingtin (htt) reduces glutamate uptake in cultured astrocytes and HD mouse brains. In a neuron–glia coculture system, wild-type glial cells protected neurons against mutant htt-mediated neurotoxicity, whereas glial cells expressing mutant htt increased neuronal vulnerability. Mutant htt in cultured astrocytes decreased their protection of neurons against glutamate excitotoxicity. These findings suggest that decreased glutamate uptake caused by glial mutant ...

Depletion of wild-type huntingtin in mouse models of neurologic diseases: Depletion of huntingtin in neurological diseases

Journal of Neurochemistry, 2003

Huntington's disease (HD) is caused by a mutation in the gene encoding for huntingtin resulting in selective neuronal degeneration. Because HD is an autosomal dominant disorder, affected individuals have one copy of the mutant and one copy of the wild-type allele. Huntingtin has antiapoptotic properties and is critical for cell survival. However, the important role of wild-type huntingtin in both HD and other neurological diseases has not been fully recognized. We demonstrate disease-associated decreased levels of full-length huntingtin in brains of transgenic mouse models of HD, ischemia, trauma, and in spinal cord after injury. In addition, overexpression of wild-type huntingtin confers in vivo protection of neurodegeneration after ischemia. We propose that in HD, in addition to a toxic gain-of-function of mutant huntingtin, a parallel depletion of wild-type huntingtin results in a detrimental loss-of-function, playing an important role in disease progression.

Mutant huntingtin oligomers drive early human pathogenesis in Huntington’s disease

Huntington's disease (HD) is an incurable inherited brain disorder characterized by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of newborn mice. Chimeric mice were subjected to behavioral testing and implanted human cells were examined by immunohistochemistry and electron microscopy. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connections within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed mHTT oligomers, which primarily targeted endoplasmic reti...