In Planta Stage-Specific Fungal Gene Profiling Elucidates the Molecular Strategies of Fusarium graminearum Growing inside Wheat Coleoptiles (original) (raw)
Related papers
Frontiers in Microbiology, 2016
Fusarium graminearum is an opportunistic pathogen of cereals where it causes severe yield losses and concomitant mycotoxin contamination of the grains. The pathogen has mixed biotrophic and necrotrophic (saprophytic) growth phases during infection and the regulatory networks associated with these phases have so far always been analyzed together. In this study we compared the transcriptomes of fungal cells infecting a living, actively defending plant representing the mixed live style (pathogenic growth on living flowering wheat heads) to the response of the fungus infecting identical, but dead plant tissues (cold-killed flowering wheat heads) representing strictly saprophytic conditions. We found that the living plant actively suppressed fungal growth and promoted much higher toxin production in comparison to the identical plant tissue without metabolism suggesting that molecules signaling secondary metabolite induction are not pre-existing or not stable in the plant in sufficient amounts before infection. Differential gene expression analysis was used to define gene sets responding to the active or the passive plant as main impact factor and driver for gene expression. We correlated our results to the published F. graminearum transcriptomes, proteomes, and secretomes and found that only a limited number of in planta-expressed genes require the living plant for induction but the majority uses simply the plant tissue as signal. Many secondary metabolite (SM) gene clusters show a heterogeneous expression pattern within the cluster indicating that different genetic or epigenetic signals govern the expression of individual genes within a physically linked cluster. Our bioinformatic approach also identified fungal genes which were actively repressed by signals derived from the active plant and may thus represent direct targets of the plant defense against the invading pathogen.
Annals of botany, 2016
Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding p...
Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis
Current Genetics, 2003
Fusarium oxysporum pathogenicity is believed to require the activity of cell wall-degrading enzymes. Production of these enzymes in fungi is subject to carbon catabolite repression, a process that in yeast is mostly controlled by the SNF1 (sucrose non-fermenting 1) gene. To elucidate the role of cell wall-degrading enzymes in F. oxysporum pathogenicity, we cloned and disrupted its SNF1 homologue (FoSNF1). The fosnf1 mutants had a reduced expression of several genes encoding cell walldegrading enzymes and grew poorly on certain carbon sources. Infection assays on Arabidopsis thaliana and Brassica oleracea revealed that progression of wilt symptoms in plants infected by fosnf1 mutants was considerably delayed, in comparison with those infected by a wild-type strain. In conclusion, mutations in FoS-NF1 prevent F. oxysporum from properly derepressing the production of cell wall-degrading enzymes, compromise the utilization of certain carbon sources, and reduce its virulence on A. thaliana and B. oleracea. Keywords Carbon catabolite repression AE Cell walldegrading enzymes AE Fungal pathogenicity AE Targeted mutagenesis AE Transposon tagging
Molecular Plant-Microbe Interactions®, 2000
Fusarium head blight (FHB) of wheat is a crippling disease that causes severe economic losses in many of the wheat-growing regions of the world. Temporal patterns of fungus development and transcript accumulation of defense response genes were studied in Fusarium graminearum-inoculated wheat spikes within the first 48 to 76 h after inoculation (hai). Microscopy of inoculated glumes revealed that the fungus appeared to penetrate through stomata, exhibited subcuticular growth along stomatal rows, colonized glume parenchyma cells, and sporulated within 48 to 76 hai. No major differences in the timing of these events were found between Sumai 3 (resistant) and Wheaton (susceptible) genotypes. In complementary experiments, RNA was extracted from spikes at several time intervals up to 48 hai and temporal expression patterns were determined for defense response genes encoding peroxidase, PR-1, PR-2 (β-1,3-glucanase), PR-3 (chitinase), PR-4, and PR-5 (thaumatin-like protein). In both genotyp...
Gene expression analysis of the wheat response to infection by Fusarium pseudograminearum
Physiological and Molecular Plant Pathology, 2008
Crown rot (CR) of wheat, caused by Fusarium pseudograminearum (Fp) and other Fusarium species, is an important disease globally. To understand the host response to challenge by Fp, we examined gene expression changes in the wheat stem base following inoculation with macroconidia using the Affymetrix GeneChip Wheat Genome Array. Induced genes included mainly those with defensive functions such as genes encoding anti-microbial proteins as well as oxidative stress-related proteins, signalling molecules, and proteins involved in both primary and secondary metabolism. Comparison of genes induced by Fp and the biotrophic rust pathogen Puccinia triticina revealed substantial overlap in most functional classes of induced genes, except for oxidative stress-related genes which were specifically induced by the necrotroph, Fp. Differential expression of selected Fp-induced genes was confirmed and further analysed using real-time quantitative RT-PCR on an inoculation time-course of wheat cultivars Kennedy and Sunco. Interestingly, several genes were induced earlier, and to higher levels, in the partially CR-resistant cultivar Sunco than in susceptible Kennedy. Many Fp-induced genes were also activated by methyl jasmonate and benzothiadiazole, an analogue of salicylic acid, suggesting that these signalling molecules may be involved in activating defences during crown rot. Most of the genes identified here that were induced by Fp were also induced by deoxynivalenol (DON), a toxin produced by Fp during CR. In particular, DON induced several genes encoding glucosyltransferases that may be involved in DON detoxification. To initiate functional characterisation, one of these wheat glucosyltransferase genes was over-expressed in Arabidopsis thaliana, however this did not result in improved tolerance to DON. This study is the first comprehensive analysis of the wheat transcriptome during CR and provides new insights into the host processes potentially involved in plant defence against this pathogen.
Fungal Genetics and Biology, 2006
Recently the genome sequences of several Wlamentous fungi have become available, providing the opportunity for large-scale functional analysis including genome-wide expression analysis. We report the design and validation of the Wrst AVymetrix GeneChip microarray based on the entire genome of a Wlamentous fungus, the ascomycetous plant pathogen Fusarium graminearum. To maximize the likelihood of representing all putative genes (»14,000) on the array, two distinct sets of automatically predicted gene calls were used and integrated into the online F. graminearum Genome DataBase. From these gene sets, a subset of calls was manually annotated and a nonredundant extract of all calls together with additional EST sequences and controls were submitted for GeneChip design. Experiments were conducted to test the performance of the F. graminearum GeneChip. Hybridization experiments using genomic DNA demonstrated the usefulness of the array for experimentation with F. graminearum and at least four additional pathogenic Fusarium species. DiVerential transcript accumulation was detected using the F. graminearum GeneChip with treatments derived from the fungus grown in culture under three nutritional regimes and in comparison with fungal growth in infected barley. The ability to detect fungal genes in planta is surprisingly sensitive even without eVorts to enrich for fungal transcripts. The Plant Expression Database (PLEXdb, http:// www.plexdb.org) will be used as a public repository for raw and normalized expression data from the F. graminearum GeneChip. The F. graminearum GeneChip will help to accelerate exploration of the pathogen-host pathways that may involve interactions between pathogenicity genes in the fungus and disease response in the plant.
Plant Biotechnology Journal, 2007
A wheat cDNA microarray consisting of 5739 expressed sequence tags (ESTs) was used to investigate the transcriptome patterns of the glume, lemma, palea, anther, ovary and rachis dissected from infected wheat spikes after inoculation with the fungus Fusarium graminearum , the causal agent of fusarium head blight (FHB) disease. Stringent conditions were employed to reduce the false discovery rate. The significance analysis of microarrays (SAM) was used to identify transcripts that showed a differential response between fungal-challenged vs. control plants. To verify the microarray data, Northern blot analysis was carried out on randomly selected up-regulated clones. We observed 185 (3.2%) up-regulated and 16 (0.28%) down-regulated ESTs in the six organs constituting the wheat spike. Many up-regulated ESTs (46.67%) showed no homology with sequences of known functions, whereas others showed homology with genes involved in defence and stress responses, the oxidative burst of H 2 O 2 , regulatory functions, protein synthesis and the phenylpropanoid pathway. The monitoring of genes in specific organs avoided the averaging of expression values over multiple organs that occurs when using data from the whole spike. Our data allowed us to uncover new up-regulated genes expressed in specific organs. The study revealed that each organ had a defined and distinctive transcriptome pattern in response to F. graminearum infection.
Molecular Plant-Microbe Interactions, 2017
Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in vi...
Genome-wide transcriptional profiling of wheat infected with Fusarium graminearum
Genomics Data, 2015
Fusarium head blight (FHB) is a destructive disease in wheat caused by Fusarium graminearum (F. g). It infects during the flowering stage favored by warm and highly humid climates. In order to understand possible wheat defense mechanism, gene expression analysis in response to F. g was undertaken in three genotypes of wheat, Japanese landrace cultivar Nobeokabouzu (highly resistant), Chinese cv. Sumai 3 (resistant) and Australian cv. Gamenya (susceptible). For microarray analysis, 3 and 7 days after inoculation (dai) samples were used in Agilent wheat custom array 4x38k. At 3 dai, the highest number of genes was up-regulated in Nobeokabouzu followed by Sumai 3 and minimum expression in Gamenya. Whereas at 7 dai, Sumai 3 expressed more genes compared to others. Further narrowing down by excluding commonly expressed genes in three genotypes and grouping according to the gene function has identified differentially high expression of genes involved in detoxification process such as multidrug resistant protein, multidrug resistance-associated protein, UDP-glycosyltransferase and ABC transporters in Nobeokabouzu at 3 dai. However in Sumai 3 many defense-related genes such as peroxidase, proteases and genes involved in plant cell wall defense at 7 dai were identified. These findings showed the difference of molecular defense mechanism among the cultivars in response to the pathogen. The complete data was accessed in NCBI GEO database with accession number GSE59721.
A proteomics survey on wheat susceptibility to Fusarium head blight during grain development
European Journal of Plant Pathology, 2014
The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains.