pDC as a modulator of platelet production (original) (raw)

Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells

Proceedings of the National Academy of Sciences of the United States of America, 2017

Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1(-/-) ). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1(-/-) mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1(-/-) platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell-Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1(-/-) platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1(-/-) platelets by the Kupffer cell through its C-type lectin rec...

Role of sialic acid for platelet life span: exposure of -galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes

Blood, 2009

Although surface sialic acid is considered a key determinant for the survival of circulating blood cells and glycoproteins, its role in platelet circulation lifetime is not fully clarified. We show that thrombocytopenia in mice deficient in the St3gal4 sialyltransferase gene (St3Gal-IV(-/-) mice) is caused by the recognition of terminal galactose residues exposed on the platelet surface in the absence of sialylation. This results in accelerated platelet clearance by asialoglycoprotein receptor-expressing scavenger cells, a mechanism that was recently shown to induce thrombocytopenia during Streptococcus pneumoniae sepsis. We now identify platelet GPIbalpha as a major counterreceptor on ST3Gal-IV(-/-) platelets for asialoglycoprotein receptors. Moreover, we report data that establish the importance of sialylation of the von Willebrand factor in its function.

Slc35a1 deficiency causes thrombocytopenia due to impaired megakaryocytopoiesis and excessive platelet clearance in the liver

Haematologica, 2020

Sialic acid is a common terminal residue of glycans on proteins and acidic sphingolipids such as gangliosides with important biological functions. The sialylation process is controlled by more than 20 different sialyltransferases, many of which exhibit overlapping functions. Thus, it is difficult to determine the overall biological function of sialylation by targeted deletion of individual sialyltransferase. To address this question, we established a mouse line with the Slc35a1 gene flanked by loxP sites. Slc35a1 encodes the CMP-sialic acid transporter that transports CMP-sialic acid from cytoplasm into the Golgi apparatus for sialylation. Here we report our study regarding the role of sialylation on megakaryocytes and platelets using a mouse line with significantly reduced sialylation in megakaryocytes and platelets (Plt Slc35a1-/-). The major phenotype of Plt Slc35a1-/mice was thrombocytopenia. The number of bone marrow megakaryocytes in Plt Slc35a1-/mice was reduced, and megakaryocyte maturation was also impaired. In addition, an increased number of desialylated platelets was cleared by Kupffer cells in the liver of Plt Slc35a1-/mice. This study provides new insights into the role of sialylation in platelet homeostasis and the mechanisms of thrombocytopenia in diseases associated with platelet desialylation, such as immune thrombocytopenic purpura and a rare congenital disorder of glycosylation (CDG), SLC35A1-CDG, which is caused by SLC35A1 mutations.

The Inflammatory Role of Platelets via Their TLRs and Siglec Receptors

Frontiers in immunology, 2015

Platelets are non-nucleated cells that play central roles in the processes of hemostasis, innate immunity, and inflammation; however, several reports show that these distinct functions are more closely linked than initially thought. Platelets express numerous receptors and contain hundreds of secretory products. These receptors and secretory products are instrumental to the platelet functional responses. The capacity of platelets to secrete copious amounts of cytokines, chemokines, and related molecules appears intimately related to the role of the platelet in inflammation. Platelets exhibit non-self-infectious danger detection molecules on their surfaces, including those belonging to the "toll-like receptor" family, as well as pathogen sensors of other natures (Ig- or complement receptors, etc.). These receptors permit platelets to both bind infectious agents and deliver differential signals leading to the secretion of cytokines/chemokines, under the control of specific i...

Role of Siglec-7 in apoptosis in human platelets

PloS one, 2014

Platelets participate in tissue repair and innate immune responses. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are well-characterized I-type lectins, which control apoptosis. We characterized the expression of Siglec-7 in human platelets isolated from healthy volunteers using flow cytometry and confocal microscopy. Siglec-7 is primarily expressed on α granular membranes and colocalized with CD62P. Siglec-7 expression was increased upon platelet activation and correlated closely with CD62P expression. Cross-linking Siglec-7 with its ligand, ganglioside, resulted in platelet apoptosis without any significant effects on activation, aggregation, cell morphology by electron microscopy analysis or secretion. We show that ganglioside triggered four key pathways leading to apoptosis in human platelets: (i) mitochondrial inner transmembrane potential (ΔΨm) depolarization; (ii) elevated expression of pro-apoptotic Bax and Bak proteins with reduced expression of anti-apoptotic B...

The Importance of Platelet Glycoside Residues in the Haemostasis of Patients with Immune Thrombocytopaenia

Journal of Clinical Medicine, 2021

Loss of sialic acid from the carbohydrate side chains of platelet glycoproteins can affect platelet clearance, a proposed mechanism involved in the etiopathogenesis of immune thrombocytopaenia (ITP). We aimed to assess whether changes in platelet glycosylation in patients with ITP affected platelet counts, function, and apoptosis. This observational, prospective, and transversal study included 82 patients with chronic primary ITP and 115 healthy controls. We measured platelet activation markers and assayed platelet glycosylation and caspase activity, analysing samples using flow cytometry. Platelets from patients with ITP with a platelet count <30 × 103/µL presented less sialic acid. Levels of α1,6-fucose (a glycan residue that can directly regulate antibody-dependent cellular cytotoxicity) and α-mannose (which can be recognised by mannose-binding-lectin and activate the complement pathway) were increased in the platelets from these patients. Platelet surface exposure of other gl...

Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice

Cell Death & Differentiation

The liver has recently been identified as a major organ for destruction of desialylated platelets. However, the underlying mechanism remains unclear. Kupffer cells, which are professional phagocytic cells in the liver, comprise the largest population of resident tissue macrophages in the body. Kupffer cells express a C-type lectin receptor, CLEC4F, that recognizes desialylated glycans with an unclear in vivo role in mediating platelet destruction. In this study, we generated a CLEC4F-deficient mouse model (Clec4f−/−) and found that CLEC4F was specifically expressed by Kupffer cells. Using the Clec4f−/− mice and a newly generated platelet-specific reporter mouse line, we revealed a critical role for CLEC4F on Kupffer cells in mediating destruction of desialylated platelets in the liver in vivo. Platelet clearance experiments and ultrastructural analysis revealed that desialylated platelets were phagocytized predominantly by Kupffer cells in a CLEC4F-dependent manner in mice. Collecti...

Maintenance of murine platelet homeostasis by the kinase Csk and the phosphatase CD148

Blood, 2018

Src family kinases (SFKs) coordinate the initiating and propagating activation signals in platelets, however it remains unclear how they are regulated. Here we show that ablation of C-terminal Src kinase (Csk) and receptor-like protein tyrosine-phosphatase CD148 in mice results in a dramatic increase in platelet SFK activity, demonstrating that these proteins are essential regulators of platelet reactivity. Paradoxically, Csk/CD148-deficient mice exhibit reduced in vivo and ex vivo thrombus formation and increased bleeding following injury, rather than a prothrombotic phenotype. This is a consequence of multiple negative feedback mechanisms, including downregulation of the immunoreceptor tyrosine-based activation motif (ITAM)- and hemi-ITAM-containing receptors GPVI-FcR γ-chain and CLEC-2, respectively and upregulation of the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B and its interaction with the tyrosine phosphatases Shp1 and Shp2. Results from ...

Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets

Blood, 2014

O-glycosylation of podoplanin (PDPN) on lymphatic endothelial cells is critical for the separation of blood and lymphatic systems by interacting with platelet C-type lectin-like receptor 2 during development. However, how O-glycosylation controls endothelial PDPN function and expression remains unclear. In this study, we report that core 1 O-glycan-deficient or desialylated PDPN was highly susceptible to proteolytic degradation by various proteases, including metalloproteinases (MMP)-2/9. We found that the lymph contained activated MMP-2/9 and incubation of the lymph reduced surface levels of PDPN on core 1 O-glycan-deficient endothelial cells, but not on wild-type ECs. The lymph from mice with sepsis induced by cecal ligation and puncture, which contained bacteria-derived sialidase, reduced PDPN levels on wild-type ECs. The MMP inhibitor, GM6001, rescued these reductions. Additionally, GM6001 treatment rescued the reduction of PDPN level on lymphatic endothelial cells in mice lacki...