Multilevel Optical Systems With MLSD Receivers Insensitive to GVD and PMD (original) (raw)
Related papers
Optimal Electrical Processing in Multilevel Optical Systems Insensitive to GVD and PMD
2008 IEEE International Conference on Communications, 2008
The optimal receiver processing based on maximum-likelihood sequence detection (MLSD) is employed with high-order phase and amplitude modulations in optical transmission systems affected by typical channel impairments such as group velocity dispersion (GVD), polarization mode dispersion (PMD), and phase uncertainties due to phase noise. A couple of widely known front ends, with proper modifications, can be used to extract the required sufficient statistics from the received signal. Receiver adaptivity and complexity reduction are also discussed. It is demonstrated that, as long as a sufficient receiver complexity is employed, GVD and PMD entail no performance degradation with respect to the case of no channel distortions (the back-to-back case).
Robust Multilevel Coherent Optical Systems With Linear Processing at the Receiver
Journal of Lightwave Technology, 2000
This paper investigates optical coherent systems based on polarization multiplexing and high-order modulations such as phase-shift keying (PSK) signals and quadrature amplitude modulations (QAM). It is shown that a simple linear receiver processing is sufficient to perfectly demultiplex the two transmitted streams and to perfectly compensate for group velocity dispersion (GVD) and polarization mode dispersion (PMD). In addition, in the presence of a strong phase noise of the lasers at the transmitter and receiver, a symbol-by-symbol detector with decision feedback is able to considerably improve the receiver robustness with a limited complexity increase. We will also discuss the channel estimation and the receiver adaptivity to time-varying channel conditions as well as the problem of the frequency acquisition and tracking. Finally, a new two-dimensional (polarization/time) differential encoding rule is proposed to overcome a polarization-ambiguity problem. In the numerical results, the receiver performance will be assessed versus the receiver complexity.
Channel Estimation Algorithms for MLSD in Optical Communication Systems
IEEE Photonics Technology Letters, 2000
Maximum likelihood sequence detection represents the most efficient technique in the electrical domain to combat fiber impairments such as polarization-mode dispersion and group-velocity dispersion. In order to successfully apply this technique, it is mandatory to estimate some key channel parameters needed by the Viterbi processor. We propose a simple and effective solution based on the least-mean-square algorithm to perform such an estimation.
State-complexity reduction in MLSD receivers for direct-detection optical communications
2007
We investigate the impact of state-complexity reduction on the performance of maximum likelihood sequence detection (MLSD) receivers for direct-photodetection long-haul optical communication systems affected by uncompensated chromatic dispersion (CD). We directly compare two possible approaches: (i) detection through a simple "brute-force" state-complexity reduction strategy and (ii) a more structured reduced-state sequence detection (RSSD) strategy. The performance of both state-complexity reduction techniques is evaluated considering two realistic optical transmission schemes, based on on-off keying (OOK) and optical duobinary modulation (ODBM), respectively. The detection algorithms are characterized considering the impact of the timing offset, the quantization scheme, and the amount of uncompensated CD. As one would expect, for a given number of states in MLSD receivers, the schemes based on RSSD exhibit better performance with respect to those based on simple brute-force state-complexity reduction. However, we show that MLSD schemes based on the use of brute-force state-complexity reduction are characterized by a better complexity/performance trade-off for low/medium CD values, whereas RSSD is the best choice for high CD values.
Maximum-Likelihood Sequence Estimation for Optical Phase-Shift Keyed Modulation Formats
IEEE/OSA Journal of Lightwave Technology, 2009
Electronic chromatic dispersion compensation employing maximum-likelihood sequence estimation (MLSE) has recently been the topic of extensive research and a range of commercial products. It is well known that MLSE provides a considerable benefit for amplitude modulated modulation formats such as ON-OFF keying (OOK) and optical duobinary. However, when applied to optical phase modulation formats, such as differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK), it has been shown that the benefit is only marginal. This paper investigates joint-decision MLSE (JD-MLSE) detection applied to 10.7-Gb/s DPSK. It demonstrates that a JD-MLSE using the constructive and destructive components preserves the 3-dB optical signal-to-noise ratio (OSNR) advantage of DPSK over OOK in dispersion-limited optical systems. Furthermore, we demonstrate that the use of a shortened MZDI with MLSE for the 10.7-Gb/s DPSK modulation can equalize an accumulated chromatic dispersion of 4000 ps/nm.
IEEE Photonics Technology Letters
We analyze the effectiveness of a 32-state maximumlikelihood sequence-estimation (MLSE) receiver on chromatic dispersion robustness of optical transmission based on several binary modulation formats: intensity modulation direct detection, differential phase-shift keying, and duobinary line coding. Multilevel differential quadrature phase-shift keying modulation is also analyzed using a four-state 2-bit/symbol joint MLSE processor. For all modulation formats, receiver filters are optimized together with the use of the MLSE technique.
Journal of Lightwave Technology, 2000
This paper thoroughly investigates the maximumlikelihood sequence detection (MLSD) receiver for the optical ON-OFF keying (OOK) channel in the presence of both polarization mode dispersion and group velocity dispersion (GVD). A reliable method is provided for computing the relevant performance for any possible value of the system parameters, with no constraint on the sampling rate. With one sample per bit time, a practically exact expression of the statistics of the received samples is found, and therefore the performance of a synchronous MLSD receiver is evaluated and compared with that of other electronic techniques such as combined feedforward and decision-feedback equalizers (FFE and DFE). It is also shown that the ultimate performance of electronic processing can be obtained by sampling the received signal at twice the bit rate. An approximate accurate closed-form expression of the receiver metrics is also identified, allowing for the implementation of a practically optimal MLSD receiver.
State-Complexity Reduction in MLSD Receivers for Optical Communications With Direct Photodetection
Journal of Lightwave Technology, 2000
We investigate the impact of state-complexity reduction on the performance of maximum likelihood sequence detection (MLSD) receivers for direct-photodetection long-haul optical communication systems affected by uncompensated chromatic dispersion (CD). We directly compare two possible approaches: (i) detection through a simple "brute-force" state-complexity reduction strategy and (ii) a more structured reduced-state sequence detection (RSSD) strategy. The performance of both state-complexity reduction techniques is evaluated considering two realistic optical transmission schemes, based on on-off keying (OOK) and optical duobinary modulation (ODBM), respectively. The detection algorithms are characterized considering the impact of the timing offset, the quantization scheme, and the amount of uncompensated CD. As one would expect, for a given number of states in MLSD receivers, the schemes based on RSSD exhibit better performance with respect to those based on simple brute-force state-complexity reduction. However, we show that MLSD schemes based on the use of brute-force state-complexity reduction are characterized by a better complexity/performance trade-off for low/medium CD values, whereas RSSD is the best choice for high CD values.
Maximum-likelihood sequence estimation in dispersive optical channels
Journal of Lightwave Technology, 2000
This paper discusses the investigation of maximum-likelihood sequence estimation (MLSE) receivers operating on intensity-modulated direct-detection optical channels. The study focuses on long-haul or metro links spanning several hundred kilometers of single-mode fiber with optical amplifiers. The structure of MLSE-based optical receivers operating in the presence of dispersion and amplified spontaneous emission (ASE), as well as shot and thermal noise, are discussed, and a theory of the error rate of these receivers is developed. Computer simulations show a close agreement between the predictions of the theory and simulation results. Some important implementation issues are also addressed. Optical channels suffer from impairments that set them apart from other channels, and therefore they need a special investigation. Among these impairments are the facts that the optical channel is nonlinear, and noise is often non-Gaussian and signal dependent. For example, in optically amplified single-mode fiber links, the dominant source of noise is ASE noise, which after photodetection is distributed according to a noncentral chi-square probability density function. In addition, optical fibers suffer from chromatic and polarization-mode dispersion (PMD). Although the use of MLSE in optical channels has been discussed in previous literature, no detailed analysis of optical receivers using this technique has been reported so far. This motivates the study reported in this paper.
Trellis coded polarization shift keying modulation for digital optical communications
IEEE Transactions on Communications, 1995
The application of the well-known technique of Trellis Coded Modulation t o coherent optical communications using Polarization Shift Keying (POLSK) is described and analyzed. The resulting receiver is formed by a frontend which performs the heterodyne detection and the Stokes parameter extraction, cascaded with an electronic Viterbi processor operating the maximum likelihood estimate of the transmitted sequence. Results in terms of the error event probability using optimum as well as a simpler suboptimum branch metric show power gains on the order of 3-4 dB, at the expense of a reasonable increase in complexity, only concerning the processing in the electronic domain. These coding gains are not lost even in the presence of high levels of phase noise, to which POLSK in general is highly insensitive.