Identification of Potent and Novel Inhibitors against Dual specificity mitogen-activated protein kinase kinase 1 (MEK1) (original) (raw)
Related papers
Chemical biology letters, 2024
Protein kinase cascades activate extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases (MAPKs), which are involved in a variety of signal transduction pathways. This article will review the present state of MAPK pathway inhibitors, emphasizing the characteristics of tiny molecule blockers of the p38, MEK1, and MEK2 protein kinases. Many of these inhibitors have shown potential in experimental animal models of disease, and they are now being investigated in people for inflammatory and cancer diseases. Clinical trials are currently evaluating targeting a subset of cellular signaling cascades and signaling cascades that control pleiotropic cellular activity. These activities will have far-reaching consequences for managing a wide range of disorders. On the other hand, the Ras-Raf-MEK-ERK pathway is a clear therapeutic target because it is a standard downstream route for a range of critical growth factor tyrosine kinase receptors frequently changed or overexpressed in human malignancies. Several new medicines that target this route have been discovered and are currently being tested in clinical studies. BAY 43-9006 is one of the most intriguing new agents. Its ability to target Flt-3, c-Kit, and VEGFR-2, despite its initial development as a Raf kinase inhibitor, helps to explain its antiproliferative and antiangiogenic properties. This study will examine the ERK signaling pathway in both malignant and normal tissue, with an emphasis on new therapeutic approaches that target the ERK cascade at the Raf kinase level.
From basic research to clinical development of MEK1/2 inhibitors for cancer therapy
Journal of Hematology & Oncology, 2010
The Ras-dependent Raf/MEK/ERK1/2 mitogen-activated protein (MAP) kinase signaling pathway is a major regulator of cell proliferation and survival. Not surprisingly, hyperactivation of this pathway is frequently observed in human malignancies as a result of aberrant activation of receptor tyrosine kinases or gain-of-function mutations in RAS or RAF genes. Components of the ERK1/2 pathway are therefore viewed as attractive candidates for the development of targeted therapies of cancer. In this article, we briefly review the basic research that has laid the groundwork for the clinical development of small molecules inhibitors of the ERK1/2 pathway. We then present the current state of clinical evaluation of MEK1/2 inhibitors in cancer and discuss challenges ahead.
The Therapeutic Promise of Anti-Cancer Drugs Against the Ras/Raf/MEK/ERK Pathway
Topics in Anti-Cancer Research, 2013
The Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) pathway mediates cellular responses to different growth signals and is frequently deregulated in cancer. There are three Raf kinases-A-Raf, B-Raf, and C-Raf; however, only B-Raf is frequently mutated in various cancers. The most common B-Raf mutation involves a substitution of a glutamic acid residue to a valine moiety at codon 600. Subsequently, the MAPK pathway is constitutively activated, even in the absence of any growth signals. Although early attempts to target Ras have not yielded any viable drug candidates, many novel compounds inhibiting the activities of B-Raf and MEK have been developed and investigated in clinical trials in recent years and have shown promising result. The first MEK inhibitor (CI-1040) lacked efficacy in clinical trials, but its low toxicity encouraged the search for novel compounds-now there are over a hundred open clinical trials employing various B-Raf and MEK inhibitors. Several of these trials are now in Phase III. In this chapter, we will discuss new patents and patent applications related to inhibitors of the Ras/Raf/MEK/ERK pathway and some recent clinical trial results.
Cancer science, 2018
Recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) has been a longstanding challenge for head and neck oncologists, and current treatments still have limited efficacy. The ERK is aberrantly overexpressed and activated in HNSCC. Here, we aimed to investigate the cause of the limited therapeutic effect of selumetinib, a selective inhibitor of MEK in HNSCC, as MEK/ERK reactivation inevitably occurs. We assessed the effects combining selumetinib with the fibroblast growth factor receptor 3 (FGFR3) inhibitor (PD173074) on tumor growth. Selumetinib transiently inhibited MAPK signaling and reactivated ERK signaling in HNSCC cells. The rebound in ERK and Akt pathway in HNSCC cells was accompanied by increased FGFR3 signaling after selumetinib treatment. Feedback activation of FGFR3 was due to autocrine secretion of the FGF2 ligand. The FGFR3 inhibitor PD173074 prevented MAPK rebound and sensitized the response of HNSCC cells to selumetinib. These results provided rational...
Molecular Cancer Therapeutics, 2010
Targeting the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway represents a promising anticancer strategy. Recently, we have reported a novel class of potent and selective non-ATP-competitive MEK1/2 inhibitors with a unique structure and mechanism of action. RO5068760 is a representative of this class showing significant efficacy in a broad spectrum of tumors with aberrant mitogen-activated protein kinase pathway activation. To understand the relationship between systemic exposures and target (MEK1/2) inhibition as well as tumor growth inhibition, the current study presents a detailed in vivo characterization of efficacy, pharmacokinetics, and pharmacodynamics of RO5068760 in multiple xenograft tumor models. For inhibition of MEK1/2 as measured by the phosphorylated ERK levels, the estimated EC 50 s in plasma were 1.36 μmol/L (880 ng/mL) and 3.35 μmol/L (2168 ng/mL) in LOX melanoma and HT-29 colorectal cancer models, respectively. A similar EC 50 (1.41 μmol/L or 915 ng/mL) was observed in monkey peripheral blood lymphocytes. To achieve tumor growth inhibition (≥90%), an average plasma drug concentration of 0.65 or 5.23 μmol/L was required in B-RafV600E or K-Ras mutant tumor models, respectively, which were remarkably similar to the IC 90 values (0.64 or 4.1 μmol/L) determined in vitro for cellular growth inhibition. With equivalent in vivo systemic exposures, RO5068760 showed superior efficacy in tumors harboring B-RafV600E mutation. The plasma concentration time profiles indicate that constant pERK suppression (>50%) may not be required for optimal efficacy, especially in highly responsive tumors. This study may facilitate future clinical trial design in using biochemical markers for early proof of mechanism and in selecting the right patients and optimal dose regimen. Mol Cancer Ther; 9(1); 134-44. ©2010 AACR.
Targeting receptor tyrosine kinases and their signal transduction routes in head and neck cancer
Annals of Oncology, 2006
Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer in the world. At present several therapeutic approaches, including surgical removal, chemotherapy and radiotherapy, are used. Yet a significant number of patients relapse, often with metastases. In an attempt to improve treatment of SCCHN new targeted therapies are emerging. Among them special interest has been devoted to agents that act on the epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases, or the signal transduction routes used by these receptors to induce tumour cell proliferation. Such treatments include monoclonal antibodies and small molecule inhibitors of either the intracellular tyrosine kinase activity of these receptors or relevant signalling intermediates. Here we review the biological bases of these new targeted treatments, with special emphasis on the clinical results that point to an implementation of these drugs into the therapeutic armamentarium against SCCHN.
2014
Purpose: This phase I expansion study assessed safety, pharmacodynamic effects, and antitumor activity of RO4987655, a pure MEK inhibitor, in selected patients with advanced solid tumor. Experimental Design: We undertook a multicenter phase I two-part study (dose escalation and cohort expansion). Here, we present the part 2 expansion that included melanoma, non-small cell lung cancer (NSCLC), and colorectal cancer with oral RO4987655 administered continuously at recommended doses of 8.5 mg twice daily until progressive disease (PD). Sequential tumor sampling investigated multiple markers of pathway activation/tumor effects, including ERK phosphorylation and Ki-67 expression. BRAF and KRAS testing were implemented as selection criteria and broader tumor mutational analysis added. Results: Ninety-five patients received RO4987655, including 18 BRAF-mutant melanoma, 23 BRAF wildtype melanoma, 24 KRAS-mutant NSCLC, and 30 KRAS-mutant colorectal cancer. Most frequent adverse events were rash, acneiform dermatitis, and gastrointestinal disorders, mostly grade 1/2. Four (24%) of 17 BRAF-mutated melanoma had partial response as did four (20%) of 20 BRAF wild-type melanoma and two (11%) of 18 KRAS-mutant NSCLC. All KRAS-mutant colorectal cancer developed PD. Paired tumor biopsies demonstrated reduced ERK phosphorylation among all cohorts but significant differences among cohorts in Ki-67 modulation. Sixty-nine percent showed a decrease in fluorodeoxyglucose uptake between baseline and day 15. Detailed mutational profiling confirmed RAS/RAF screening and identified additional aberrations (NRAS/non-BRAF melanomas; PIK3CA/KRAS colorectal cancer) without therapeutic implications. Conclusions: Safety profile of RO4987655 was comparable with other MEK inhibitors. Single-agent activity was observed in all entities except colorectal cancer. Evidence of target modulation and early biologic activity was shown among all indications independent of mutational status. Clin Cancer Res; 20(16); 4251-61. Ó2014 AACR.
RAS/RAF/MEK Inhibitors in Oncology
Bentham Science
The RAS/RAF/MEK signaling pathway plays a central role in mediating both proliferation and survival of cancer cells. These proteins are a group of serine/threonine kinases activated in response to a variety of extracellular stimuli and mediate signal transduction from the cell surface towards both nuclear and cytosolic targets. In combination with several other signaling pathways, they can differentially alter phosphorylation status of the transcription factors. A controlled regulation of these cascades is involved in cell proliferation and differentiation, whereas an unregulated activation of these kinases can result in oncogenesis. Dysregulation of the RAS/RAF/MEK pathway has been detected in more than 30% of human tumors, however mutations in the MEK1 and MEK2 genes are seldom, so that hyperactivation of MEK1/2 usually results from gain-of-function mutations in RAS and/or B-RAF. In addition, alteration of the pathways is often associated with drug resistance in the clinic, such as the case of K-RAS mutant expressing tumors. Since RAS protein is a difficult target, alternative ways altering post-translational modifications using farnesyl transferase inhibitors have been adopted. Drug discovery programs have therefore largely focused on B-RAF and MEK. In this review we will discuss the most promising strategies developed to target these kinases and the most recent inhibitors facing the preclinical and clinical setting, also considering their structure-activity relationship (SAR).
Scientific Reports, 2016
Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor ...