Natural sources and encapsulating materials for probiotics delivery systems: Recent applications and challenges in functional food development (original) (raw)
Related papers
Recent Approaches in the Development of Encapsulated Delivery Systems for Probiotics
Food Biotechnology, 2011
The concept of probiotics has been well-known for more than a century. The availability and survival of the consumed probiotics in the colon has not been proved convincingly and needs further studies and clarification. It was not known whether the fastidious probiotics could reach the targeted site of action due to gastrointestinal stress. However, probiotics must sustain themselves in high
Encapsulation of probiotic living cells: From laboratory scale to industrial applications
Journal of Food Engineering, 2011
In the recent past, there has been a rising interest in producing functional foods containing encapsulated probiotic bacteria. According to their perceived health benefits, probiotics have been incorporated into a range of dairy products but the major current challenge is to market new probiotic foods. In the research sector, many studies have been reported using dairy products like cheese, yogurt and ice cream as food carrier, and non-dairy products like meat, fruits, cereals, chocolate, etc. However, in the commercial sector only few products containing encapsulated probiotic cells can be found. Nutraceuticals are another important vector for probiotics already developed by several companies in a capsule or a tablet form. The review compiles the technologies used to encapsulate the cells in order to keep them alive and the food matrices used in the research and commercial sector for delivery to the consumer.
Encapsulation of probiotics: insights into academic and industrial approaches
AIMS materials science, 2016
The natural inhabitants of the gastrointestinal tract play a key role in the maintenance of human health. Over the last century, the changes on the behavior of our modern society have impacted the diversity of this gut microbiome. Among the strategies to restore gut microbial homeostasis, the use of probiotics has received a lot of attention. Probiotics are living microorganisms that promote the host health when administered in adequate amounts. Its popularity increase in the marketplace in the last decade draws the interest of scientists in finding suitable methods capable of delivering adequate amounts of viable cells into the gastrointestinal tract. Encapsulation comes into the scene as an approach to enhance the cells survival during processing, storage and consumption. This paper provides a comprehensive perspective of the probiotic field at present time focusing on the academia and industry scenarios in the past few years in terms of encapsulation technologies employed and research insights including patents. The analysis of the encapsulation technologies considering food processing costs and payload of viable bacteria reaching the gastrointestinal tract would result into successful market novelties. There is yet a necessity to bridge the gap between academia and industry.
Probiotic encapsulation technology: from microencapsulation to release into the gut
Pharmaceutics, 2012
Probiotic encapsulation technology (PET) has the potential to protect microorgansisms and to deliver them into the gut. Because of the promising preclinical and clinical results, probiotics have been incorporated into a range of products. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This paper reviews the methodological approach of probiotics encapsulation including biomaterials selection, choice of appropriate technology, in vitro release studies of encapsulated probiotics, and highlights the challenges to be overcome in this area.
Probiotication of foods: A focus on microencapsulation tool
Trends in Food Science and Technology, 2016
Background With almost thirty years of application in field of probiotics, microencapsulation is becoming an important technology for sustaining cell viability during food production, storage and consumption as well as for the development of new probiotic food carriers. Potentiality of microcapsules in protecting probiotics along human digestive tract seems to be well established. Instead, the inclusion of probiotics into foods, also in microencapsulated form, poses still many challenges for the retention of their viability, being food intrinsic and extrinsic factors crucial for this item. Scope and Approach We collect the relevant literature concerning the use of microencapsulation for the inclusion of probiotics in traditional food vehicles such as milk derivatives and in novel food carriers that were grouped in bakery, meat, fruit and vegetable. Furthermore we intent to highlight within different food categories the main factors that act in challenging probiotics viability and functionality. What we aim is to establish how microencapsulation is effectively promising in the research and development of innovative probiotic foods.
Encapsulation Technology to Protect Probiotic Bacteria
2012
Most existing probiotics have been isolated from the human gut microbiota. This microbiota plays an important role in human health, not only due to its participation in the digestion process, but also for the function it plays in the development of the gut and the immune system [42]. The mechanisms of action of probiotic bacteria are thought to result from modification of the composition of the endogenous intestinal microbiota and its metabolic activity, prevention of overgrowth and colonization of pathogens and stimulation of the immune system [43]. With regard to pathogen exclusion, probiotic bacteria can produce antibacterial substances (such as bacteriocins and hydrogen peroxide), acids (that reduce the pH of the intestine), block adhesion sites and be competitive for nutrients [44]. Recent studies have shown differences in the composition of the gut microbiota of healthy subjects [45], underlining the difficulties in defining the normal microbiota at microbial species level. Moreover, studies suggest that some specific changes in gut microbiota composition are associated with different diseases [46, 47]. This was confirmed by the comparison of the microbiome from healthy individuals with those of diseased individuals, allowing the identification of microbiota imbalance in human diseases such as inflammatory bowel disease or obesity [48, 49]. 3. Encapsulation of probiotic living cells Encapsulation is often mentioned as a way to protect bacteria against severe environmental factors [50, 51].The goal of encapsulation is to create a micro-environment in which the bacteria will survive during processing and storage and released at appropriate sites (e.g. small intestine) in the digestive tract. The benefits of encapsulation to protect probiotics against low gastric pH have been shown in numerous reports [50] and similarly for liquidbased products such as dairy products [21, 52]. Encapsulation refers to a physicochemical or mechanical process to entrap a substance in a material in order to produce particles with diameters of a few nanometres to a few millimetres. So, the capsules are small particles that contain an active agent or core material surrounded by a coating or shell. Encapsulation shell materials include a variety of polymers, carbohydrates, fats and waxes, depending of the core material to be protected, and this aspect will be discussed below in the this section. The protection of bioactive compounds, as vitamins, antioxidants, proteins, and lipids may be achieved using several encapsulation technologies for the production of functional foods with enhanced functionality and stability. Encapsulation technologies can be used in many applications in food industry such as controlling oxidative reaction, masking flavours, colours and odours, providing sustained and controlled release, extending shelf life, etc. In the probiotic particular case, these need to be protected during the time from processing to consumption of a food product. The principal factors against them need to be protected are: Processing conditions (temperature, oxidation, shear, etc.) Desiccation (for dry food products) Storage conditions (packaging and environment: moisture, oxygen, temperature, etc.
BioMed Research International, 2013
The administration of probiotic bacteria for health benefit has rapidly expanded in recent years, with a global market worth $32.6 billion predicted by 2014. The oral administration of most of the probiotics results in the lack of ability to survive in a high proportion of the harsh conditions of acidity and bile concentration commonly encountered in the gastrointestinal tract of humans. Providing probiotic living cells with a physical barrier against adverse environmental conditions is therefore an approach currently receiving considerable interest. Probiotic encapsulation technology has the potential to protect microorganisms and to deliver them into the gut. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This review focuses mainly on the methodological approach of probiotic encapsulation including biomaterials selection and choice of appropriate technology in detailed manner.
Materials Used for the Microencapsulation of Probiotic Bacteria in the Food Industry
Molecules
Probiotics and probiotic therapy have been rapidly developing in recent years due to an increasing number of people suffering from digestive system disorders and diseases related to intestinal dysbiosis. Owing to their activity in the intestines, including the production of short-chain fatty acids, probiotic strains of lactic acid bacteria can have a significant therapeutic effect. The activity of probiotic strains is likely reduced by their loss of viability during gastrointestinal transit. To overcome this drawback, researchers have proposed the process of microencapsulation, which increases the resistance of bacterial cells to external conditions. Various types of coatings have been used for microencapsulation, but the most popular ones are carbohydrate and protein microcapsules. Microencapsulating probiotics with vegetable proteins is an innovative approach that can increase the health value of the final product. This review describes the different types of envelope materials th...
Encapsulation of probiotic bacteria is generally used to enhance the viability during processing, and also for the target delivery in gastrointestinal tract. Probiotics are used with the fermented dairy products, pharmaceutical products, and health supplements. They play a great role in maintaining human health. The survival of these bacteria in the human gastrointestinal system is questionable. In order to protect the viability of the probiotic bacteria, several types of biopolymers such as alginate, chitosan, gelatin, whey protein isolate, cellulose derivatives are used for encapsulation and several methods of encapsulation such as spray drying, extrusion, emulsion have been reported. This review focuses on the method of encapsulation and the use of different biopolymeric system for encapsulation of probiotics.
Microencapsulation of Probiotic Bacteria and its Potential Application in Food Technology
International Journal of Agriculture, Environment and Biotechnology, 2014
Today the use of probiotic bacteria in food is of increasing interest to provide beneficial health effects in the food industry. Microencapsulation technology can be used to maintain the viability of probiotic bacteria during food product processing and storage. However, it is unknown to consumers how these beneficial bacteria sustain viability in food products and in our bodies. These microcapsules are artificially created to support the growth of the probiotic and provide protection from harsh external environments. Polysaccharides like alginate, gelan, carrageenan, chitosan and starch are the most commonly used materials in microencapsulation of bifidobacteria and lactobacilli. Techniques commonly applied for probiotic microencapsulation are emulsion, extrusion, spray drying, and adhesion to starch. It is done on bakery products, ready to eat cereals, dairy products etc. Now a days aseptic microencapsulation is introduced to biodegradable material. New creation and future progress will be carried by double microencapsulation, improving strain & culture. Highlights • The use of microencapsulated probiotics for controlled release applications is a promising alternative to solving the major problems of organisms that are faced by food industries. • Microencapsulation has proven one of the most potent methods for maintaining high viability and stability of probiotic bacteria, as it protects probiotics both during food processing and storage. • The entrapment in conventions Ca-alginate beads has been a popular method for immobilization of lactic acid bacteria; Use of different encapsulation technologies for protection of health ingredients achieved high ingredient efficiency.