Predominant effects of litter chemistry on lignin degradation in the early stage of leaf litter decomposition (original) (raw)

Factors regulating litter mass loss and lignin degradation in late decomposition stages

We studied late-stages decomposition of four types of coniferous needle and three types of deciduous leaf litter at two sites, one nutrient-poor boreal and one nutrient-rich temperate. The late stage was identified by that reached by litters at the onset of net loss of lignin mass, i.e. at about 1 year after the incubation when the highest amount of lignin had been detected; the study extended over the following 2 year period. Decomposition rates were significantly lower at the boreal than at the temperate site and did not differ between needle litter and leaf litter. In the boreal forest: (1) mass-loss was positively correlated with N and Mn release, (2) Mn concentration at the start of the late stage was positively correlated with lignin decay, (3) Ca concentration was negatively correlated to litter mass loss and lignin decay. In the temperate forest neither lignin, N, Mn, and Ca concentration at the start of the late stage, nor their dynamics were related to litter decomposition rates and lignin decay. In leaf litter mass-loss and lignin decay were positively correlated with N and Ca release and with Ca concentration. In needle litter mass-loss was positively correlated to Mn release and N concentration negatively with lignin decay. We concluded that Ca, N and Mn have different roles in controlling lignin decay depending on type of litter and site conditions.

Nutrient dynamics and lignocellulose degradation in decomposing Quercus serrata leaf litter

Ecological Research, 1998

The litter mass loss, concentration and mass of some major nutrient elements, degradation of lignin and cellulose in decomposing Quercus serrata Murray leaf litter were monitored for 3 years using the litterbag method. The mobility of elements during the course of the study was in the order of: K > P > C > Mg > Ca > N. Three patterns of nutrient dynamics were observed: (i) concentration increased while mass decreased (N, Mg and Ca); (ii) concentration and nutrient mass decreased (K and C); and (iii) both concentration and mass had fluctuated (P). The C to element ratio tended to increase as the element was released, and decreased as the element was retained. Nitrogen mobility in relation to carbon was characterized by three phases: (i) initial release; (ii) accumulation and (iii) final release. The decay rate (k) calculated from 0–6 months period was overestimated for an average annual rate while those of 0–36 months fit the negative single exponential model (Adj. r 2 = 0.99) better than shorter periods. For lignin, the concentration had increased then decreased but tended to stabilize after 1 year while the lignin mass had continuously decreased throughout the study period. During the first 9 months, both the concentrations and mass of cellulose had fluctuated but declined thereafter. The amounts of N had initially increased but declined after 1 year; P had fluctuated while K, Ca, Mg and C had decreased throughout the study. N and C/N ratio exerted strong influence on mass loss during the first24 months but the influence of lignin emerged after 24 months.