Presignal Signature of Radon (Rn 222 ) for Seismic Events (original) (raw)
2018
Abstract
Rock microfracturing in the Earth’s crust preceding a seismic rupture may cause local surface deformation fields, rock dislocations, charged particle generation and motion, electrical conductivity changes, radon and other gases emission, fluid diffusion, electrokinetic, piezomagnetic and piezoelectric effects as well as climate fluctuations. Space-time anomalies of radon gas emitted in underground water, soil and near the ground air weeks to days in the epicentral areas can be associated with the strain stress changes that occurred before the occurrence of medium and strong earthquakes. This paper presents some results of continuous monitoring of radon in air near the ground with short term (ten days exposure time) solid state nuclear track detectors (SSNTD) CR-39 at seismic stations Plostina (Vrancea), and Bucharest Magurele, Romania. During 2012–2016 periods, radon concentration anomalies along with meteorological parameters were found to be statistically significant for the seism...
Dan Savastru hasn't uploaded this paper.
Let Dan know you want this paper to be uploaded.
Ask for this paper to be uploaded.