RHIC Beam Energy Scan Operation with Electron Cooling in 2020 (original) (raw)
Related papers
Accelerator Performance During the Beam Energy Scan II at RHIC in 2019
2019
RHIC provided Au-Au collisions at beam energies of 9.8, 7.3, 4.59 and 3.85 GeV/nucleon during the first year of the Beam Energy Scan II in 2019. The physics goals at the first two higher beam energies were achieved. At the two lower beam energies, bunched electron beam cooling has been demonstrated successfully. The accelerator performance was improved compared to when RHIC was operated at these energies in earlier years. This article will introduce the challenges to operate RHIC at low energies and the corresponding countermeasures, and review the improvement of accelerator performance during the operation in 2019.
Preparation for the Beam Energy Scan II at RHIC in 2020
2019
RHIC will provide Au-Au collisions at beam energies of 5.75, 4.59 GeV/nucleon for physics program in 2020, and at beam energy of 3.85 GeV/nucleon for physics program in 2021 as part of the Beam Energy Scan II (BES-II). The operational experience gained in the first year (2019) of BES-II operation will be applied toward operations in the coming years. This article will present some technical details and the outlook of the BES-II operations in the coming years.
Beam energy scan with asymmetric collision at RHIC
2016
A beam energy scan of deuteron-gold collision, with center-of-mass energy at 19.6, 39, 62.4 and 200.7 GeV/n, was performed at the Relativistic Heavy Ion Collider (RHIC) in 2016 to study the threshold for quark-gluon plasma (QGP) production. The lattice, RF, stochastic cooling and other subsystems were in different configurations for the various energies. The operational challenges changed with every new energy. The operational experience at each energy, the operation performance, highlights and lessons of the beam energy scan are reviewed in this report.
Physical review accelerators and beams, 2022
The Beam Energy Scan phase II (BES-II), performed in the Relativistic Heavy Ion Collider (RHIC) from 2019 to 2021, explored the phase transition between quark-gluon plasma and hadronic gas. BES-II exceeded the goal of a fourfold increase in the average luminosity over that achieved during Beam Energy Scan phase I (BES-I), at five gold beam energies: 9.8, 7.3, 5.75, 4.59, and 3.85 GeV=nucleon. This was accomplished by addressing several beam dynamics effects, including intrabeam scattering, beam-beam, space charge, beam instability, and field errors induced by superconducting magnet persistent currents. Some of these effects are especially detrimental at low energies. BES-II achievements are presented, and the measures taken to improve RHIC performance are described. These measures span the whole RHIC complex, including ion beam sources, injectors, beam lifetime improvements in RHIC, and operation with the world's first bunched beam Low Energy RHIC electron Cooler (LEReC).
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000
Electron Cooling Simulations for Low-Energy RHIC Operation
Recently, a strong interest emerged in running the Relativistic Heavy Ion Collider (RHIC) at low beam total energies of 2.5-25 GeV/nucleon, substantially lower than the nominal beam total energy of 100 GeV/nucleon. Collisions in this low energy range are motivated by one of the key questions of quantum chromodynamics (QCD) about the existence and location of critical point on the QCD phase diagram. Applying electron cooling directly at these low energies in RHIC would result in significant luminosity increase and long beam stores for physics. Without direct cooling in RHIC at these low energies, beam lifetime and store times are very short, limited by strong transverse and longitudinal intrabeam scattering (IBS). In addition, for the lowest energies of the proposed energy scan, the longitudinal emittance of ions injected from the AGS into RHIC may be too big to fit into the RHIC RF bucket. An improvement in the longitudinal emittance of the ion beam can be provided by an electron cooling system at the AGS injection energy. Simulations of electron cooling both for direct cooling at low energies in RHIC and for injection energy cooling in the AGS were performed and are summarized in this report.
Review of Recent Results from the Rhic Beam Energy Scan
Modern Physics Letters A, 2013
We review recent results from the RHIC beam energy scan (BES) program, aimed to study the Quantum Chromodynamics (QCD) phase diagram. The main goals are to search for the possible phase boundary, softening of equation of state or first order phase transition, and possible critical point. Phase-I of the BES program has recently concluded with data collection for Au+Au collisions at center-of-mass energies [Formula: see text] of 7.7, 11.5, 19.6, 27 and 39 GeV. Several interesting results are observed for these lower energies where the net-baryon density is high at the mid-rapidity. These results indicate that the matter formed at lower energies (7.7 and 11.5 GeV) is hadron dominated and might not have undergone a phase transition. In addition, a centrality dependence of freeze-out parameters is observed for the first time at lower energies, slope of directed flow for (net)-protons measured versus rapidity shows an interesting behavior at lower energies, and higher moments of net-proto...
RHIC Au-Au Operation at 100 GeV in Run16
2017
In order to achieve higher instantaneous and integrated luminosities, the average Au bunch intensity in RHIC has been increased by 30% compared to the preceding Au run. This increase was accomplished by merging bunches in the RHIC injector AGS. Luminosity leveling for one of the two interaction points (IP) with collisions was realized by continuous control of the vertical beam separation. Parallel to RHIC physics operation, the electron beam commissioning of a novel cooling technique with potential application in eRHIC, Coherent electron Cooling as a proof of principle (CeCPoP), was carried out. In addition, a 56 MHz superconducting RF cavity was commissioned and made operational. In this paper we will focus on the RHIC performance during the 2016 Au-Au run.
Coherent Electron Cooling Experiment at RHIC: Status and Plans
2019
In this talk we will present the status of the Coherent electron Cooling demonstration experiment at BNL and our proposed step using plasma-cascade micro-bunching amplifier. We will present both the progress and the stumbling blocks with this challenging project. The presentation will also contain relevant theory and simulations. Finally, we will present the design of our next experiment and prediction for CeC cooling 26.5 GeV/u hadron beam in RHIC.