{"content"=>"Engineering the fatty acid synthesis pathway in PCC 7942 improves omega-3 fatty acid production.", "i"=>{"content"=>"Synechococcus elongatus"}} (original) (raw)
Related papers
Synechococcus elongatus PCC 7942 as a Platform for Bioproduction of Omega-3 Fatty Acids
Life
Alpha-linolenic acid and stearidonic acid are precursors of omega-3 polyunsaturated fatty acids, essential nutrients in the human diet. The ability of cyanobacteria to directly convert atmospheric carbon dioxide into bio-based compounds makes them promising microbial chassis to sustainably produce omega-3 fatty acids. However, their potential in this area remains unexploited, mainly due to important gaps in our knowledge of fatty acid synthesis pathways. To gain insight into the cyanobacterial fatty acid biosynthesis pathways, we analyzed two enzymes involved in the elongation cycle, FabG and FabZ, in Synechococcus elongatus PCC 7942. Overexpression of these two enzymes led to an increase in C18 fatty acids, key intermediates in omega-3 fatty acid production. Nevertheless, coexpression of these enzymes with desaturases DesA and DesB from Synechococcus sp. PCC 7002 did not improve alpha-linolenic acid production, possibly due to their limited role in fatty acid synthesis. In any case...
Biotechnology for biofuels, 2016
Among the three model cyanobacterial species that have been used for engineering a system for photosynthetic production of free fatty acids (FFAs), Synechococcus elongatus PCC7942 has been the least successful; the FFA-excreting mutants constructed from this strain could attain lower rates of FFA excretion and lower final FFA concentrations than the mutants constructed from Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002. It has been suggested that S. elongatus PCC7942 cells suffer from toxicity of FFA, but the cause of the low productivity has remained to be determined. By modulating the expression level of the acyl-acyl carrier protein thioesterase and raising the light intensity during cultivation, FFA secretion rates comparable to those obtained with the other cyanobacterial species were attained with an engineered Synechococcus elongatus mutant (dAS1T). The final FFA concentration in the external medium was also higher than previously reported for other S. elongatus mut...
Biotechnology for Biofuels, 2019
Background: Cyanobacteria are potential sources for third generation biofuels. Their capacity for biofuel production has been widely improved using metabolically engineered strains. In this study, we employed metabolic engineering design with target genes involved in selected processes including the fatty acid synthesis (a cassette of accD, accA, accC and accB encoding acetyl-CoA carboxylase, ACC), phospholipid hydrolysis (lipA encoding lipase A), alkane synthesis (aar encoding acyl-ACP reductase, AAR), and recycling of free fatty acid (FFA) (aas encoding acyl-acyl carrier protein synthetase, AAS) in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Results: To enhance lipid production, engineered strains were successfully obtained including an aas-overexpressing strain (OXAas), an aas-overexpressing strain with aar knockout (OXAas/KOAar), and an accDACB-overexpressing strain with lipA knockout (OXAccDACB/KOLipA). All engineered strains grew slightly slower than wild-type (WT), as well as with reduced levels of intracellular pigment levels of chlorophyll a and carotenoids. A higher lipid content was noted in all the engineered strains compared to WT cells, especially in OXAas, with maximal content and production rate of 34.5% w/DCW and 41.4 mg/L/day, respectively, during growth phase at day 4. The OXAccDACB/KOLipA strain, with an impediment of phospholipid hydrolysis to FFA, also showed a similarly high content of total lipid of about 32.5% w/ DCW but a lower production rate of 31.5 mg/L/day due to a reduced cell growth. The knockout interruptions generated, upon a downstream flow from intermediate fatty acyl-ACP, an induced unsaturated lipid production as observed in OXAas/KOAar and OXAccDACB/KOLipA strains with 5.4% and 3.1% w/DCW, respectively. Conclusions: Among the three metabolically engineered Synechocystis strains, the OXAas with enhanced free fatty acid recycling had the highest efficiency to increase lipid production.
Incorporation, fate and turnover of free fatty acids in cyanobacteria
FEMS Microbiology Reviews
Fatty acids are important molecules in bioenergetics and also in industry. The phylum Cyanobacteria consists of a group of prokaryotes that typically carry out oxygenic photosynthesis with water as an electron donor and use carbon dioxide as a carbon source to generate a range of biomolecules, including fatty acids. They are also able to import exogenous free fatty acids and direct them to biosynthetic pathways. Here, we review current knowledge on mechanisms and regulation of free fatty acid transport into cyanobacterial cells, their subsequent activation and use in the synthesis of fatty acid-containing biomolecules such as glycolipids and alka(e)nes, as well as recycling of free fatty acids derived from such molecules. This review also covers efforts in the engineering of such cyanobacterial fatty acid-associated pathways en route to optimized biofuel production.
Biotechnology for biofuels, 2017
Cyanobacterial mutants engineered for production of free fatty acids (FFAs) secrete the products to the medium and hence are thought to be useful for biofuel production. The dAS1T mutant constructed from Synechococcus elongatus PCC 7942 has indeed a large capacity of FFA production, which is comparable to that of triacylglycerol production in green algae, but the yield of secreted FFAs is low because the cells accumulate most of the FFAs intracellularly and eventually die of their toxicity. To increase the FFA productivity, enhancement of FFA secretion is required. Growth of dAS1T cells but not WT cells was inhibited in a liquid medium supplemented with 0.13 g L(-1) of palmitic acid. This suggested that when FFA accumulates in the medium, it would inhibit the release of FFA from the cell, leading to FFA accumulation in the cell to a toxic level. To remove FFAs from the medium during cultivation, an aqueous-organic two-phase culture system was developed. When the dAS1T culture was ov...
Scientific Reports, 2020
The integrative aspect on carbon fixation and lipid production is firstly implemented in cyanobacterium Synechocystis sp. PCC 6803 using metabolic engineering approach. Genes related to Calvin–Benson–Bassham (CBB) cycle including rbcLXS and glpD and free fatty acid recycling including aas encoding acyl-ACP synthetase were practically manipulated in single, double and triple overexpressions via single homologous recombination. The significantly increased growth rate and intracellular pigment contents were evident in glpD-overexpressing (OG) strain among all strains studied under normal growth condition. The triple aas_glpD_rbcLXS-overexpressing (OAGR) strain notably gave the highest contents of both intracellular lipids and extracellular free fatty acids (FFAs) of about 35.9 and 9.6% w/DCW, respectively, when compared to other strains at day 5 of cultivation. However, the highest intracellular lipid titer and production rate were observed in OA strain at day 5 (228.7 mg/L and 45.7 mg...
PLoS ONE, 2013
We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-estersynthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis.
Biotechnology for Biofuels and Bioproducts
Background Based on known metabolic response to excess free fatty acid (FFA) products, cyanobacterium Synechocystis sp. PCC 6803 preferentially both recycles via FFA recycling process and secrets them into medium. Engineered cyanobacteria with well growth and highly secreted FFA capability are considered best resources for biofuel production and sustainable biotechnology. In this study, to achieve the higher FFA secretion goal, we successfully constructs Synechocystis sp. PCC 6803 mutants disrupting genes related to FFA recycling reaction (aas gene encoding acyl–acyl carrier protein synthetase), and surface layer protein (encoded by sll1951). Results Three Synechocystis sp. PCC 6803 engineered strains, including two single mutants lacking aas (KA) and sll1951 (KS), and one double mutant lacking both aas and sll1951 (KAS), significantly secreted FFAs higher than that of wild type (WT). Certain increase of secreted FFAs was noted when cells were exposed to nitrogen-deficient condition...