A new CUL4B variant associated with a mild phenotype and an exceptional pattern of leukoencephalopathy (original) (raw)
Related papers
Variants inCUL4Bare Associated with Cerebral Malformations
Human Mutation, 2014
Variants in cullin 4B (CUL4B) are a known cause of syndromic X-linked intellectual disability. Here, we describe an additional 25 patients from 11 families with variants in CUL4B. We identified nine different novel variants in these families and confirmed the pathogenicity of all nontruncating variants. Neuroimaging data, available for 15 patients, showed the presence of cerebral malformations in ten patients. The cerebral anomalies comprised malformations of cortical development (MCD), ventriculomegaly, and diminished white matter volume. The phenotypic heterogeneity of the cerebral malformations might result from the involvement of CUL-4B in various cellular pathways essential for normal brain development. Accordingly, we show that CUL-4B interacts with WDR62, a protein in which variants were previously identified in patients with microcephaly and a wide range of MCD. This interaction might contribute to the development of cerebral malformations in patients with variants in CUL4B.
Variants in CUL4B are Associated with Cerebral Malformations
2014
Variants in cullin 4B (CUL4B) are a known cause of syndromic X-linked intellectual disability. Here, we describe an additional 25 patients from 11 families with variants in CUL4B. We identified nine different novel variants in these families and confirmed the pathogenicity of all nontruncating variants. Neuroimaging data, available for 15 patients, showed the presence of cerebral malformations in ten patients. The cerebral anomalies comprised malformations of cortical development (MCD), ventriculomegaly, and diminished white matter volume. The phenotypic heterogeneity of the cerebral malformations might result from the involvement of CUL-4B in various cellular pathways essential for normal brain development. Accordingly, we show that CUL-4B interacts with WDR62, a protein in which variants were previously identified in patients with microcephaly and a wide range of MCD. This interaction might contribute to the development of cerebral malformations in patients with variants in CUL4B.
Syndromic X-linked intellectual disability segregating with a missense variant in RLIM
European journal of human genetics : EJHG, 2015
We describe a three-generation Norwegian family with a novel X-linked intellectual disability (XLID) syndrome characterized by subtle facial dysmorphism, autism and severe feeding problems. By exome sequencing we detected a rare missense variant (c.1067A>G, p.(Tyr356Cys)) in the RLIM gene, in two affected male second cousins. Sanger sequencing confirmed the presence of the variant in the four affected males (none of whom were siblings) and in three mothers available for testing. The variant was not present in 100 normal Norwegian controls, has not been reported in variant databases and is deleterious according to in silico prediction tools. The clinical phenotype and the variant co-segregate, yielding a LOD score of 3.0 for linkage to the shared region (36.09 Mb), which contains 242 genes. No other shared rare variants on the X chromosome were detected in the two affected exome-sequenced individuals, and all female carriers had an extremely skewed X-chromosome inactivation patter...
The American Journal of Human Genetics, 2007
We reevaluated a previously reported family with an X-linked mental retardation syndrome and attempted to identify the underlying genetic defect. Screening of candidate genes in a 10-Mb region on Xq25 implicated CUL4B as the causative gene. CUL4B encodes a scaffold protein that organizes a cullin-RING (really interesting new gene) ubiquitin ligase (E3) complex in ubiquitylation. A base substitution, c.1564CrT, converted a codon for arginine into a premature termination codon, p.R388X, and rendered the truncated peptide completely devoid of the C-terminal catalytic domain. The nonsense mutation also results in nonsense-mediated mRNA decay in patients. In peripheral leukocytes of obligate carriers, a strong selection against cells expressing the mutant allele results in an extremely skewed X-chromosome inactivation pattern. Our findings point to the functional significance of CUL4B in cognition and in other aspects of human development.